
Heuristic Planning for Hybrid Systems

Wiktor Piotrowski Daniele Magazzeni Maria Fox Derek Long
Department of Informatics

King’s College London
London, UK

Fabio Mercorio
Department of Statistics and Quantitative Methods

C.R.I.S.P. Research Centre
University of Milan-Bicocca

Milan, Italy

Abstract

Planning in hybrid systems has been gaining research
interest in the Artificial Intelligence community in re-
cent years. Hybrid systems allow for a more accurate
representation of real world problems, though solving
them is very challenging due to complex system dy-
namics and a large model feature set. In this paper we
introduce DiNo, a new planner capable of tackling com-
plex problems with non-linear system dynamics govern-
ing the continuous evolution of states. DiNo is based
on the discretise and validate approach and uses the
novel Staged Relaxed Planning Graph (SRPG) heuris-
tic, which is introduced in this paper. DiNo is currently
the only heuristic planner capable of handling non-
linear system dynamics combined with the full PDDL+
feature set.

1 Introduction
Over the years, Automated Planning research has been con-
tinuously attempting to solve the most advanced and com-
plex planning problems. The standard modelling language,
PDDL (McDermott et al. (1998)), has been evolving to ac-
commodate new concepts and operations, enabling research
to tackle problems more accurately representing real-world
scenarios. Recent versions of the language, PDDL2.1 and
PDDL+ (Fox and Long (2003, 2006)), enabled the most ac-
curate standardised way yet, of defining hybrid problems as
planning domains.

Planning in hybrid domains (also known as hybrid sys-
tems) is currently one of the fastest growing and most inter-
esting subfields of Artificial Intelligence planning. Hybrid
domains are models of systems which exhibit both continu-
ous and discrete behaviour. They are amongst the most ad-
vanced models of systems and the resulting problems are no-
toriously difficult for planners to cope with due to non-linear
behaviours and immense search spaces. Indeed, planning in
hybrid domains is challenging because apart from the state
explosion caused by discrete state variables, the continuous
variables cause the reachability problem to become undecid-
able (Alur et al. (1995)).

In this paper, we introduce DiNo, a new planner de-
signed to tackle problems set in hybrid domains with

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mixed discrete-continuous system dynamics. DiNo uses
the planning-as-model-checking paradigm (Cimatti et al.
(1997); Bogomolov et al. (2014)) and relies on the Discretise
& Validate approach (Della Penna et al. (2009)) to handle
continuous change and non-linearity in a finite search space.

DiNo, based on UPMurphi, extends its capabilities by
using a novel relaxation-based domain-independent heuris-
tic, Staged Relaxed Planning Graph (SRPG). The heuris-
tic guides the Enforced Hill-Climbing algorithm (Hoffmann
and Nebel (2001)). In DiNo we also exploit the deferred
heuristic evaluation (Richter and Westphal (2010)) for com-
pleteness (in a discretised search space with a finite hori-
zon). The SPRG heuristic improves on the Temporal Re-
laxed Planning Graph and extends its functionality to in-
clude information gained from PDDL+ features, namely the
processes and events.

DiNo is currently the only heuristic planner capable of
handling non-linear system dynamics combined with the full
PDDL+ feature set.

We begin by discussing the related work done in the area
of PDDL+ planning in section 2. We then outline the ba-
sis of the Discretise & Validate method on which DiNo is
based and the underlying UPMurphi architecture in section
3. In section 4 we describe the SRPG heuristic. Section 5
describes the experiments conducted to test DiNo against its
competitor planners. We also describe Powered Descent, a
new hybrid domain we designed to further test DiNo’s capa-
bilities and performance. Section 6 concludes the paper.

2 Related Work
Various techniques and tools have been proposed to deal
with hybrid domains (Penberthy and Weld (1994); McDer-
mott (2003); Li and Williams (2008); Coles et al. (2012);
Shin and Davis (2005)). More recent approaches in this di-
rection have been proposed by (Bogomolov et al. (2014)),
where the close relationship between hybrid planning do-
mains and hybrid automata is explored, and (Bryce et al.
(2015)) where PDDL+ models are handled using SMT.

Nevertheless, none of these approaches are able to han-
dle the full set of PDDL+ features, namely nonlinear do-
mains with processes and events. To date, the only viable
approach in this direction is PDDL+ planning via discreti-
sation. UPMurphi (Della Penna, Magazzeni, and Mercorio
(2012)), which implements the discretise and validate ap-

proach, is able to deal with the full range of PDDL+ features.
The main drawback of UPMurphi is the lack of heuristics,
and this strongly limits its scalability. However, UPMur-
phi was successfully used in the multiple-battery manage-
ment domain (Fox, Long, and Magazzeni (2012)), where a
domain-specific heuristic was used.

3 Discretise & Validate Approach
As a successor to UPMurphi (Della Penna et al. (2009)),
DiNo relies on the Discretise & Validate approach which
approximates the continuous dynamics of systems in a dis-
cretised model with uniform time steps and step functions.
Using a discretised model and a finite-time horizon ensures a
finite number of states in the search for a solution. Solutions
to the discretised problem are validated against the origi-
nal continuous model using VAL (Howey, Long, and Fox
(2004)). If the plan at a certain discretisation is not valid,
the discretisation can be refined and the process iterates. An
outline of the Discretise & Validate process is shown in Fig.
1.

Figure 1: The Discretise & Validate diagram

In order to plan in the discretised setting, PDDL+ models
are translated into finite state temporal systems, as formally
described in the following.

Definition 1. ∆−Action. A ∆-action updates the state dur-
ing the search. It can be of three types: an instantaneous
PDDL action, a snap action (Long and Fox (2003)), or a
time-passing action, tp.

The effect of instantaneous actions and snap actions, is
to update the state variables in the state resulting from their
application, and to start/end a durative action. The time-
passing action implements the step function used to discre-
tise the system dynamics, and its effects are: (i) to update
all numeric state variables affected by the combined effect
of all processes that are active at the time of application, (ii)
to update all state variables affected by events, and (iii) to
advance time by ∆t.

Definition 2. Finite State Temporal System (FSTS).
Let a Finite State Temporal System S be a tuple
(S, s0,∆A,D, F, T) where S is a finite set of states, s0 ∈ S
the initial state, ∆A is a finite set of ∆-actions and D =
{0,∆t} where ∆t is the discretised time step. F : S×∆A×
D → S is the transition function, i.e. F (s,∆a, d) = s′ iff
applying a ∆-action ∆a with a duration d to a state s yields
a new reachable state s′. T is the finite temporal horizon.

Note that d can be 0 to allow for concurrent plans and
instantaneous actions. In fact, d will equal ∆t only in the
case of the tp action. The finite temporal horizon T makes
the set of discretised states S finite.

Definition 3. Trajectory. A trajectory, π, in an FSTS S =
(S, s0,∆A,D, F) is a sequence of states, ∆-actions and
durations, i.e. π = s0,∆a0, d0, s1,∆a1, d1, ..., sn where
∀i ≥ 0, si ∈ S is a state, ∆ai ∈ ∆A is a ∆-action and
di ∈ D is a duration. At each step i, the transition func-
tion F yields the subsequent state: F (si,∆ai, di) = si+1.
Given a trajectory π, we use πs(k), πa(k), πd(k) to denote
the state, ∆-action and duration at step k, respectively. The
length of the trajectory based on the number of actions it
contains is denoted by |π| and the duration of the trajectory
is denoted as π̃ =

∑|π|−1
i=0 πd(i).

Each state s contains a temporal clock t : S → R+,
and t(s) counts the time elapsed in the current trajectory
from the initial state to s. Furthermore, ∀si, sj ∈ S :
F (si,∆a, d) = sj , t(sj) = t(si) + d. Clearly, for all states
s, t(s) ≤ T .

An example of a trajectory π is shown in the following:

(s0, a1, 0)(s1, tp, 1)(s2, a2, 0)(s3, tp, 1)(s4, e1, 0)

(s5, tp, 1)(s6, tp, 1)(s7, e2, 0)(s8, tp, 1)(s9, a3, 0)

where π̃ = 5, and the corresponding graphical representa-
tion is reported in Figure 2.

Definition 4. Planning Problem. In terms of a FSTS,
a planning problem P is defined as a tuple S =
((S, s0,∆A,D, F, T), G) where G ⊆ S is a finite set of
goal states. A solution to P is a trajectory π∗ where |π∗| =
n, π̃ ≤ T, π∗s (0) = s0 and π∗s (n) ∈ G.

3.1 Handling the PDDL+ Semantics through
Discretisation

In the following we show how FSTS are used to handle the
PDDL+ semantics, and describe how this approach has been
first implemented in UPMurphi.

Time and Domain Variable Discretisation. UPMurphi
discretises hybrid domains using discrete uniform time steps
and corresponding step functions. The discretisations for the
continuous time and the continuous variables are set by the
user. Timed Initial Literals and Fluents are variables whose
value changes at a predefined time point (Edelkamp and
Hoffmann (2004)). UPMurphi can handle Timed Initial Lit-
erals and numeric Timed Initial Fluents to the extent that the
discretisation used is fine enough to capture the happenings
of TILs and TIFs. On the other hand, the time granularity of

Figure 2: Example of processes and events interaction in the
discretised plan timeline

TILs and TIFs can be used as a guidance for choosing the
initial time discretisation.

Actions and Durative-Actions Actions are instanta-
neous, while durative-actions are handled following the
start-process-stop model introduced by Fox and Long
(2006). A durative-action is translated into: (i) two snap ac-
tions that apply the discrete effects at start and at end of the
action; (ii) a process that applies the continuous change over
the action execution (iii) and an event that checks whether
all the overall conditions are satisfied in the open interval
of the durative-action execution. Following Definition 1, ac-
tions in UPMurphi are used to model instantaneous and snap
actions, while the special action time-passing tp is used to
advance time and handle processes and events.

Processes and Events. UPMurphi uses the tp action to
check preconditions of processes and events at each clock-
tick, and then apply the effects for each triggered event and
active process.

Clearly, the processes/events interleaving could easily re-
sult in a complex scenario to be executed, as for example
an event can initiate a process, or multiple events can be
triggered at a single time point. To address this kind of in-
teraction between processes and events, UPMurphi works
as follows: first, it applies the continuous changes for each
active process and the effects of each triggered event. Sec-
ond, it assumes that no event can affect the parts of the state
relevant to the preconditions of other events, according to
the no moving target definition provided by (Fox and Long
(2003)). In this way, the execution of events is mutually-
exclusive, and their order of execution does not affect the
final outcome of the plan. Third, UPMurphi imposes that,
at each clock tick, any event can be fired at most once, as
specified by (Fox, Howey, and Long (2005)), for avoiding
cyclic triggering of events.

4 Staged Relaxed Planning Graph
This section describes the Staged Relaxed Planning Graph
(SRPG) domain-independent heuristic implemented in
DiNo. It is designed for hybrid domains with continuous
change and PDDL+ features. The heuristic is based on

the successful and well-known Temporal Relaxed Planning
Graph (TRPG), but it significantly differs in time handling.

The SRPG heuristic follows from Propositional (Hoff-
mann and Nebel (2001)), Numeric (Hoffmann (2003, 2002))
and Temporal RPGs (Coles et al. (2012, 2008); Coles and
Coles (2013)). The original problem is relaxed and does
not account for the delete effects of actions on propositional
facts. Numeric variables are represented as upper and lower
bounds which are the theoretical highest and lowest values
each variable can take at the given fact layer. Each layer is
time-stamped to keep track of the time at which it occurs.

4.1 Time-Staging
The Temporal RPG takes time constraints into account by
time-stamping each fact layer at the earliest possible occur-
rence of a happening. This means that only fact layers where
values are directly affected by actions are contained in the
Relaxed Planning Graph.

The Staged RPG differs from the TRPG in that it explic-
itly represents every fact and action layer separated by a pre-
defined time interval. The RPG is ”staged” in the sense that
the finite set of fact layers are separated by ∆t.

The SRPG follows the priority of happenings from VAL,
i.e. each new fact layer f ′ is generated by applying the ef-
fects of active processes in f , applying the effects of any
triggered events and firing all applicable actions, respec-
tively. Note that, as for the FSTS, also in the SRPG the time
passing action tp is used for handling processes and events
effects and for advancing time by ∆t.

In the following we give a formal definition of an SRPG,
starting from the FSTS for which it is constructed.

Fact layers and relaxed actions in the SRPG are defined
as in the standard numeric RPG, except for the fact that each
fact layer includes also the temporal clock.

Definition 5. SRPG Let S = (S, s0,A,D, F, T) be an
FSTS, then a Staged Relaxed Planning Graph Ŝ is a tuple
(Ŝ, ŝ0, ∆̂A,∆t, F̂ , T) where Ŝ is a finite set of fact layers,
ŝ0 is the initial fact layer, ∆̂A is a set of relaxed ∆ actions,
∆t is the time step. F̂ : Ŝ × 2∆̂A × ∆t → Ŝ is the SRPG
transition function. T is the finite temporal horizon.

The SRPG transition function F̂ is a relaxation of the
original FSTS transition function F , and follows the stan-
dard RPG approach: effects deleting any propositions are
ignored and the numeric effects only modify the appropri-
ate bounds for each numeric variable. Note that the set ∆̂A
of relaxed ∆ actions includes the time passing action tp as
from Definition 1. Also in the SRPG the tp is responsible
for handling processes and events, whose effects are relaxed
in the standard way.

Note that the time horizon T bounds the expansion of the
SRPG. The evaluated state’s heuristic estimate will be set to
a very high threshold value if the SRPG is unable to satisfy
the goal conditions within the time horizon.

4.2 Time-passing
The time-passing action plays an important role as it propa-
gates the search in the discretised timeline. During the nor-

(a) UPMurphi (b) DiNo

Figure 3: Branching of search trees (red edges correspond
to the helpful actions in the SRPG)

mal expansion of the Staged Relaxed Planning Graph, the
time-passing is one of the ∆-actions and is applied at each
fact layer. Time-passing can be recognised as a helpful ac-
tion when its effects achieve some goal conditions (or inter-
mediate goal facts). Furthermore, if at a given time t there
are no helpful actions available to the planner, time-passing
is assigned highest priority and used as a helpful action. This
allows the search to quickly manage states at time t where
no happenings of interest are likely to occur.

This is the key innovation with respect to the standard
search in the discretised timeline performed, e.g., by UP-
Murphi. Indeed, the main drawback of UPMurphi is in that
it needs to expand the states at each time step, even dur-
ing the idle periods, i.e., when no interesting interactions or
effects can happen. Conversely, the SRPG allows DiNo to
recognise when time-passing is a helpful action (as it is the
case during the idle periods) and thus advance time mitigat-
ing the state explosions.

An illustrative example is shown in Figure 3, that com-
pares the branching of the search in UPMurphi and DiNo
when planning with a Solar Rover domain. The domain is
described in detail in Section 5. Here we highlight that the
planner can decide to use two batteries, but the goal can only
be achieved thanks to a Timed Initial Literal that is triggered
only late in the plan. In such a case, UPMurphi has no in-
formation about the need to wait for the TIL, therefore it
tries to use the batteries at each time step. On the contrary,
DiNo recognises the time-passing as an helpful action, and
this prunes the state space dramatically.

4.3 Processes and Events in the SRPG
As the SRPG is tailored for PDDL+ domains, it takes into
account processes and events. In the SRPG, the continuous
effects of processes are handled in the same manner as du-
rative action effects, i.e. at each action layer, the numeric
variables upper and lower bounds are updated based on the
time-step functions used in the discretisation to approximate

the continuous dynamics of the domain.
Events are checked immediately after processes and their

effects are relaxed as for the instantaneous actions. The
events can be divided into “good” and “bad” categories.
“Good” events aid in finding the goal whereas “bad” events
either hinder or completely disallow reaching the goal. Cur-
rently, DiNo is agnostic about this distinction. However, as
a direct consequence of the SRPG behaviour, DiNo exploits
good events and ignores the bad ones. Future work will
explore the possibility of inferring more information about
good and bad events from the domain.

5 Evaluation
In this section we evaluate the performance of DiNo on
PDDL+ benchmark domains. Note that the only planner
able to deal with the same class of problems is UPMurphi,
which is also the most interesting competitor as it can high-
light the benefits of the proposed heuristic. To this end, Ta-
ble 1 summarises the number of states visited by DiNo and
UPMurphi in each test, in order to provide a clear overview
of the pruning effect of the SRPG heuristic. However, for
sake of completeness, where possible we also provide a
comparison with other competitors able to handle (sub-class
of) PDDL+ features, namely POPF (Coles et al. (2010);
Coles and Coles (2013)) and dReach (Bryce et al. (2015)).

Each domain in our test suite was chosen to highlight a
specific aspect of DiNo: Generator is the benchmark do-
main, Solar Rover shows how DiNo handles Timed Initial
Literals, Powered Descent further tests DiNo’s non-linear
capabilities, and the Car domain shows the overhead gen-
erated by the SRPG under shortage of heuristic information.

All test domains, problems and plans are available at:
[Website ommitted for author anonymity]. Note that all fig-
ures in this sections have their Y axis in a logarithmic scale
and for all domains we used the same time discretisation
∆t = 1.0.

For a fair comparison, all reported results were achieved
by running the competitor planners on a machine with an
8-core Intel Core i7 CPU, 8GB RAM and Ubuntu 14.04 op-
erating system.

Generator The generator domain is well-known across
the planning community and has been a test-bed for many
planners. The problem revolves around refueling a diesel-
powered generator which has to run for a given duration
without overflowing or running dry. We evaluate DiNo on
both the linear and non-linear versions of the problem. In the
linear variant we increase the number of tanks available to
the planner while decreasing the initial generator fuel level.
The non-linear problems have an increasing duration of the
generator action and increasing number of refueling tanks
available.

The results for the linear generator problems (Figure 4 and
Table 2) show that DiNo clearly outperforms its competitors
and scales really well on this problem whereas UPMurphi,
POPF and dReach all suffer from state space explosion rel-
atively early. The time horizon was set to T = 1000, that is
the duration for which the generator is requested to run.

DOMAIN PLANNER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LINEAR GENERATOR DiNo 1,990 2,957 3,906 4,837 5,750 6,645 7,522 8,381 9,222 10,045 10,850 11,637 12,406 13,157 13,890 14,605 15,302 15,981 16,642 17,285
UPMurphi 7,054,713 X X X X X X X X X X X X X X X X X X X

NON-LINEAR GENERATOR DiNo 374 1,631 9,735 19,165 99,602 222,144 2,491,141 1,046,579 X X - - - - - - - - - -
UPMurphi 1,768,138 X X X X X X X X X - - - - - - - - - -

LINEAR SOLAR ROVER DiNo 211 411 611 811 1,011 1,211 1,411 1,611 1,811 2,011 2,211 2,411 2,611 2,811 3,011 3,211 3,411 3,611 3,811 4,011
UPMurphi 9,885,372 X X X X X X X X X X X X X X X X X X X

NON-LINEAR SOLAR ROVER DiNo 231 431 631 831 1,031 1,231 1,431 1,631 1,831 2,031 2,231 2,431 2,631 2,831 3,031 3,231 3,431 3,631 3,831 4,031
UPMurphi 14,043,452 X X X X X X X X X X X X X X X X X X X

POWERED DESCENT DiNo 582 942 2,159 4,158 3,161 3,345 4,552 3,850 1,180 1,452 9,498 44,330 12,570 55,265 15,115 64,996 1,587 2,426,576 X X
UPMurphi 1,082 30,497 134,135 361,311 1,528,321 6,449,518 16,610,175 44,705,509 45,579,649 X X X X X X X X X X X

CAR DiNo 2,974 10,435 18,800 26,132 31,996 36,409 36,504 41,483 42,586 43,112 - - - - - - - - - -
UPMurphi 4,124 10,435 18,800 26,132 31,996 36,409 36,504 41,483 42,586 43,112 - - - - - - - - - -

Table 1: Number of states explored for each problem in our test domains (”X” - planner ran out of memory, ”-” - problem not
tested)

Figure 4: Linear Generator results

Figure 5 shows the results for the non-linear generator
problem. Also in this case, the time horizon was set as a
function of the duration for which the generator is requested
to run in each test. The domain could only be tested on DiNo
and UPMurphi as the remaining planners do not support
non-linear behaviour. dReach results presented in (Bryce
et al. (2015)) show that it is only able to solve instances of
the non-linear generator problem with up to 3 tanks. How-
ever, the dReach results have been left out of our comparison
as Bryce et al. tested a much simpler version of the prob-
lem compared to us and difficulty with reproducing our do-
main (written in PDDL+) using the dReach modelling lan-
guage. The dReach domain and problem description is not
standardised and extremely difficult to code as each mode
has to be explicitly defined (i.e. the files for 1, 2, 3 and 4
tanks problems are respectively 91, 328, 1350, 5762 lines
long). Furthermore, Bryce et al. use a much simplified ver-
sion of the problem where the generator can never overflow,
the refueling action duration is fixed (refueling tanks have
no defined capacity), and the flow rate formula is defined as
(0.1 ∗ (tank refuel time2)).

In contrast, our variant of the non-linear generator prob-
lem uses the Torricelli Law to model the refueling flow rate,
the refueling action have inequality-based duration depen-
dent on the tanks’ fuel levels, and the generator can easily
overflow. As a result, our domain is far more complex and
further proves our improvement.

Figure 5: Non-linear Generator results

As can be noticed, DiNo scales very well on these prob-
lems and drastically reduces the number of explored states
and the time to find a solution compared to UPMurphi.

Solar Rover We developed the Solar Rover domain to test
the limits and potentially overwhelm discretisation-based
planners, as finding a solution to this problem relies on a
TIL that is triggered only late in the plan.

The task revolves around a planetary rover transmitting
data which requires a certain amount of energy.

In order to generate enough energy the rover can choose
to use its batteries or gain energy through its solar panels.
However, the initial state is at night time and the rover has
to wait until daytime to be able to gather enough energy to
send the data. The sunshine event is triggered by a TIL at a
certain time. The set of problem instances for this domain
has the trigger fact become true at an increasingly further
time point (between 50 and 1000 time units).

This problem has also been extended to a non-linear ver-
sion to further test our planner. Instead of instantaneous in-
crease in rover energy at a certain time point, the TIL now
triggers a process charging the rover’s battery at an exponen-
tial rate. For both variants of the domain the time horizon is
set depending on the time point at which the sunexposure
TIL is triggered (as defined in the problems).

The results (Figures 6 and 7) show that DiNo can easily
handle this domain and solve all test problems. UPMurphi
struggles and is only able to solve the smallest problem in-

DOMAIN PLANNER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LINEAR GENERATOR

DiNo 0.34 0.40 0.50 0.60 0.74 0.88 1.00 1.16 1.38 2.00 1.84 2.06 2.32 2.46 2.88 2.94 3.42 3.54 3.76 4.26
POPF 0.01 0.01 0.05 0.41 6.25 120.49 X X X X X X X X X X X X X X

UPMurphi 140.50 X X X X X X X X X X X X X X X X X X X
dReach 2.87 X X X X X X X - - - - - - - - - - - -

Table 2: Time taken to find a solution for the linear generator domain. Problem number corresponds to number of available
refueling tanks (”X” - planner ran out of memory, ”-” - problem not tested).

Figure 6: Solar Rover results

stance of either variant. POPF and dReach could not solve
this domain due to problems with handling events.

Powered Descent We developed a new domain which
models a powered spacecraft landing on a given celestial
body. The vehicle gains velocity due to the force of grav-
ity. The available action is to fire thrusters to decrease its
velocity. The thrust action duration is flexible and depends
on the available propellant mass. The force of thrust is cal-
culated via Tsiolkovsky rocket equation (Turner (2008)):

∆v = Isp g ln
m0

m1
(1)

∆v is the change in spacecraft velocity, Isp is the spe-
cific impulse of the thruster and g is the gravitational pull.
m0 is the total mass of the spacecraft before firing thrusters
and m1 = m0 − qt is the mass of the spacecraft afterwards
(where q is the rate at which propellant in consumed/ejected
and t is the duration of the thrust). The goal is to reach
the ground with a low enough velocity to make a controlled
landing and not crash. The spacecraft has been modelled af-
ter the Lunar Descent Module used in NASA’s Apollo mis-
sions.

Figure 8 shows results for the Powered Descent problems
with increasing initial altitude of the spacecraft (from 100
to 1800 metres) under Earth’s force of gravity. The SRPG
time horizon was set to T = 20 for the first 3 problems
and T = 40 for the remaining problem instances based on
the equations in the domain. It has to be said that even a
minimal change in the initial conditions can vastly affect the
complexity of the problem.

Figure 7: Non-linear Solar Rover

Figure 8: Powered Descent results

Car The Car domain (Fox and Long (2006)) shows that
DiNo does not perform well on all types of problems, the
heuristic cannot extract enough information from the do-
main and as a result loses out to UPMurphi by approxi-
mately one order of magnitude. Figure 9 shows results for
problems with processes and events. This variant of the Car
domain has its overall duration and acceleration limited, and
the problems are set with increasing bounds on the accel-
eration (corresponding to the problem number). The SRPG
time horizon was set to T = 15 based on the goal conditions.

Figure 9: Car (with processes and events)

The reason why the SRPG heuristic does not help in this
case it that there is no direct link between any action in the
domain and the goal conditions, since only the processes af-
fect the necessary variables. As a consequence, DiNo reverts
to a blind search and explores the same number of states as
UPMurphi. The results show the overhead generated by the
SRPG heuristic in DiNo. The overhead depends on the sizes
of states and the length of the solution.

6 Conclusion
We have presented DiNo, the first heuristic planner capa-
ble of reasoning with the full PDDL+ feature set and com-
plex non-linear systems. DiNo is based on the Discretise &
Validate approach, and uses the novel Staged Relaxed Plan-
ning Graph domain-independent heuristic that we have in-
troduced in this paper. We have empirically proved DiNo’s
superiority over its competitors for problems set in hybrid
domains. Enriching discretisation-based planning with an
efficient heuristic that takes processes and events into ac-
count is an important step in PDDL+ planning. Future re-
search will concentrate on expanding DiNo’s capabilities to
deal with larger problem instances and infer more informa-
tion about effects of events.

References
Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T.;

Ho, P.; Nicolin, X.; Olivero, A.; Sifakis, J.; and Yovine,
S. 1995. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science 138:3–34.

Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as Model Checking in Hybrid Do-
mains. In Proceedings of the Twenty Eighth Conference
on Artificial Intelligence (AAAI-14). AAAI Press.

Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P.
2015. SMT-Based Nonlinear PDDL+ Planning. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, January 25-30, 2015, Austin, Texas,
USA., 3247–3253.

Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso,
P. 1997. Planning via model checking: A decision proce-
dure for ar. In Recent Advances in AI planning. Springer.
130–142.

Coles, A., and Coles, A. 2013. PDDL+ Planning with
Events and Linear Processes. PCD 2013 35.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Plan-
ning with Problems Requiring Temporal Coordination. In
AAAI, 892–897.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In ICAPS, 42–
49.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric
Change. Journal of Artificial Intelligence Research (JAIR)
44:1–96.

Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila,
B. 2009. UPMurphi: A Tool for Universal Planning on
PDDL+ Problems. In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS 2009). AAAI.

Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012. A
Universal Planning System for Hybrid Domains. Appl.
Intell. 36(4):932–959.

Edelkamp, S., and Hoffmann, J. 2004. Pddl2. 2: The lan-
guage for the classical part of the 4th international plan-
ning competition. 4th International Planning Competi-
tion (IPC’04), at ICAPS’04.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Jour-
nal of Artificial Intelligence Research 20:61–124.

Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial
Intelligence Research 27:235–297.

Fox, M.; Howey, R.; and Long, D. 2005. Validating Plans in
the Context of Processes and Exogenous Events. In AAAI,
volume 5, 1151–1156.

Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based
Policies for Efficient Multiple Battery Load Management.
J. Artif. Intell. Res. (JAIR) 44:335–382.

Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal
of Artificial Intelligence Research 14:253–302.

Hoffmann, J. 2002. Extending FF to Numerical State Vari-
ables. In ECAI, 571–575. Citeseer.

Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating“Ignoring Delete Lists”to Numeric State Variables.
Journal of Artificial Intelligence Research 20:291–341.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In Tools with Artificial Intelli-
gence, 2004. ICTAI 2004. 16th IEEE International Con-
ference on, 294–301. IEEE.

Li, H. X., and Williams, B. C. 2008. Generative Planning for
Hybrid Systems Based on Flow Tubes. In ICAPS, 206–
213.

Long, D., and Fox, M. 2003. Exploiting a graphplan frame-
work in temporal planning. In Proceedings of the Thir-
teenth International Conference on Automated Planning
and Scheduling (ICAPS 2003), June 9-13, 2003, Trento,
Italy, 52–61.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL - The Planning Domain Definition Language.

McDermott, D. V. 2003. Reasoning about Autonomous
Processes in an Estimated-Regression Planner. In ICAPS,
143–152.

Penberthy, J. S., and Weld, D. S. 1994. Temporal Planning
with Continuous Change. In AAAI, 1010–1015.

Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39(1):127–
177.

Shin, J.-A., and Davis, E. 2005. Processes and Continu-
ous Change in a SAT-based Planner. Artif. Intell. 166(1-
2):194–253.

Turner, M. J. 2008. Rocket and spacecraft propulsion: prin-
ciples, practice and new developments. Springer Science
& Business Media.

