
Outline

• ROS Basics

• Plan Execution

• Very Simple Dispatch

• Very Simple Temporal Dispatch

• Conditional Dispatch

• Temporal and Conditional Dispatch together

• Dispatching More than a Single Plan

• Hierarchical and Recursive Planning

• Opportunistic Planning

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

<launch>
<include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
<include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>

<arg name="odom_topic" default="odom" />
<arg name="laser_topic" default="scan" />

<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />
<remap from="odom" to="$(arg odom_topic)"/>
<remap from="scan" to="$(arg laser_topic)"/>

</node>
</launch>

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

The actionlib package standardizes the interface for preemptable tasks.

For example:

- navigation,

- performing a laser scan

- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for

sending task:

- goals

- feedback

- result

ROS Basics

Aside from numerous tools, Actionlib provides standard messages for
sending task:

- goals

- feedback

- result
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose
std_msgs/Header header

uint32 seq
time stamp
string frame_id

geometry_msgs/Pose pose
geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w

Plan Execution 1: Very simple

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

(Some) Related Work

McGann et el.C., Py, F., A deliberative architecture for AUV control. In Proc. Int. Conf. on Robotics and
Automation (ICRA), 2008

Beetz & McDermott Improving Robot Plans During Their Execution. In Proc. International Conference
on AI Planning Systems (AIPS), 1994

Ingrand et el. PRS: a high level supervision and control language for autonomous mobile robots. In
IEEE Int.l Conf. on Robotics and Automation, 1996

Kortenkamp & Simmons Robotic Systems Architectures and Programming. In Springer Handbook of
Robotics, pp. 187–206, 2008

Lemai-Chenevier & Ingrand Interleaving Temporal Planning and Execution in Robotics Domains. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2004

Baskaran, et el. Plan execution interchance language (PLEXIL) Version 1.0. NASA Technical
Memorandum, 2007

Robertson et al. Autonomous Robust Execution of Complex Robotic Missions. Proceedings of the 9th
International Conference on Intelligent Autonomous Systems (IAS-9), 2006

Plan Execution 1: Very simple

Dispatch

Plan Execution 1: Very simple

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

Plan Execution 1: Very simple

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

Red boxes are components of

ROSPlan. They correspond to

ROS nodes.

The domain and problem file can

be supplied

- in launch parameters

- as ROS service parameters

Plan Execution 1: Very simple

Dispatch

rosplan_dispatch_msgs/CompletePlan

ActionDispatch[] plan

int32 action_id

string name

diagnostic_msgs/KeyValue[] parameters

string key

string value

float32 duration

float32 dispatch_time

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

- timed execution

- Petri-Net plans

- Esterel Plans

- etc.

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

An action in the plan is stored as a ROS message

ActionDispatch, which corresponds to a PDDL action.

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

The ActionDispatch message is received by a listening

interface node, and becomes a goal for control.

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000

0.000: (goto_waypoint wp0) [10.000]

10.01: (observe ip3) [5.000]

15.02: (grasp_object box4) [60.000]

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

Feedback is returned to the simple dispatcher

(action success or failure) through a ROS message:

ActionFeedback.

A dispatch loop without feedback

Plan Execution Failure

This form of simple dispatch has some problems. The robot often exhibits

zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan fails, but the robot doesn't notice.

Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.

Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan

again, from the new current state, without human intervention.

The problem file must be regenerated.

PDDL Model

To generate the problem file automatically, the agent

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node

called the Knowledge Base.

PDDL Model

To generate the problem file automatically, the agent

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node

called the Knowledge Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

PDDL Model

To generate the problem file automatically, the agent

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node

called the Knowledge Base.

From this, the initial state of a new planning problem can

be created.

ROSPlan contains a node which

will generate a problem file for the

ROSPlan planning node.

PDDL Model

The model must be continuously updated from sensor

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the

Knowledge Base.

PDDL Model

The model must be continuously updated from sensor

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the

Knowledge Base.
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance

ROSPlan components

ROSPlan components

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute

the plan for a long time without purpose.

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute

the plan for a long time without purpose.

The success or failure of an action can sometimes not be understood

outside of the context of the whole plan.

Bad Behaviour 2: Plan Failure

There should be

diagnosis at the

level of the plan.

If the plan will fail in

the future, the robot

should not continue

to execute the plan

for a long time

without purpose.

Bad Behaviour 2: Plan Failure

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain,

and the roadmap might not be correct.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around

to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

ROSPlan validates using VAL. [Fox et al. 2005]

ROSPlan: Default Configuration

Now the system is more

complex:

- PDDL model is

continuously updated from

sensor data.

- problem file is

automatically generated.

ROSPlan: Default Configuration

Now the system is more

complex:

- PDDL model is

continuously updated from

sensor data.

- problem file is

automatically generated.

- the planner generates a

plan.

- the plan is dispatched

action-by-action.

ROSPlan: Default Configuration

Now the system is more

complex:

- PDDL model is

continuously updated from

sensor data.

- problem file is

automatically generated.

- the planner generates a

plan.

- the plan is dispatched

action-by-action.

- feedback on action

success and failure.

- the plan is validated

against the current model.

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are

not violated.

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are

not violated.

Setting t(b1) == t(b2) will always obey
the temporal constraints.

STPUs: Strong controllability

The STPU is not strongly controllable, but it is obviously executable.

It is dynamically controllable.

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are

not violated.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

Not all problems will have solutions have any kind of controllability.

This does not mean they are impossible to plan or execute.

To reason about these kinds of issues we need to use a plan

representation sufficient to capture

- the difference between controllable and uncontrollable durations,

- causal orderings, and

- temporal constraints.

Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation
sufficient to capture the controllable and uncontrollable durations, causal
orderings, and temporal constraints.

The representation of a plan is coupled with the

choice of dispatcher.

The problem generation and planner are not

necessarily bound by the choice of

representation.

Plan Execution 3: Conditional

Dispatch

Uncertainty and lack of knowledge is a huge part of AI Planning for

Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in AI Planning

Some uncertainty can
be handled at planning
time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g.
ROSPlan with
Contingent-FF)

Plan Execution 4: Temporal and

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional

reasoning. Combining these two kinds of uncertainty can result in very

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional

reasoning. Combining these two kinds of uncertainty can result in very

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional

reasoning. Combining these two kinds of uncertainty can result in very

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

ROSPlan is integrated with the PNPRos library for the representation and

execution of Petri Net plans. [Sanelli, Cashmore, Magazzeni, and Iocchi; 2017]

Summary of Very Simple Plan Execution

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Required input
Available feedback
Preemptable execution
Local recovery behaviour

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Available sensors
Semantic evaluation
Passive vs. active
User input

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Plan validation
Condition checking
Temporal or numeric models
Knowledge reasoning

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Re-planning
Plan repair
Problem and domain regeneration
Opportunity planning
Plan merging

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

The execution of a

plan is an emergent

behaviour of the

whole system.

Summary of Very Simple Plan Execution

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

The execution of a

plan is an emergent

behaviour of the

whole system.

Summary of Very Simple Plan Execution

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour

might move toward achievement of multiple goals together.

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning process,

and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.

Dispatching more than a Single Plan

How do you plan from future situations that you can't predict?

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search

scenario. For tracking targets, tidying household objects, or interacting

with people.

Dispatching more than a Single Plan

Dispatching more than a Single Plan

Hierarchical and Recursive Planning

For each task we generate a tactical plan.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints

are used in the generation of the strategic problem.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints

are used in the generation of the strategic problem.

For each task we generate a tactical plan. The time and resource constraints

are used in the generation of the strategic problem.

A strategic plan is generated that does not violate the time and resource

constraints of the whole mission.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical

problem is regenerated, replanned, and executed.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical

problem is regenerated, replanned, and executed.

The tactical mission is

executed by a complete

planning system.

[Cashmore et al. 2015]

Hierarchical and Recursive Planning

Hierarchical and Recursive Planning

Observing an object has

two outcomes:

- Success. The object

is classified or

recognised

- Failure. The object

type is still unknown,

but new viewpoints

are generated to

discriminate between

high-probability

possibilities.

Hierarchical and Recursive Planning

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0]

0.000: (pickup-object) [16.0]

0.000: (goto_waypoint) [10.0]

The action corresponds

to a short tactical plan to

observe viewpoints.

Hierarchical and Recursive Planning

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0]

0.000: (pickup-object) [16.0]

0.000: (goto_waypoint) [10.0]

The action corresponds

to a short tactical plan to

observe viewpoints.

Hierarchical and Recursive Planning

The action corresponds

to a short tactical plan to

observe viewpoints.

The next tactical plan

can only be generated

once the new viewpoints

are known.

Hierarchical and Recursive Planning

The components of

the system are the

same as the very

simple dispatch.

The behaviour of

the robot is very

different.

Hierarchical and Recursive Planning

The components of

the system are the

same as the very

simple dispatch.

The behaviour of

the robot is very

different.

The execution of a

plan is an

emergent

behaviour of the

whole system.

Both the

components and

how they are used.

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution

of a plan fragment, then the currently executing

plan can be pushed onto the stack and a new

plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic

Planning

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution

of a plan fragment, then the currently executing

plan can be pushed onto the stack and a new

plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic

Planning

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.

Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the

advancement towards multiple goals.

[Mudrova et al. 2016]

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP

move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

The RosPNP Library

encapsulates both

action dispatch and

state updates.

In a Petri Net plan the

only state estimation

performed is explicit in

the plan.

ROSPlan and PNP

ROSPlan documentation and source:
kcl-planning.github.io/ROSPlan

