
Michael Cashmore Daniele Magazzeni

King’s College London

AAAI-17
4 February 2017

San Francisco – California - USA

AAAI-17 Tutorial on

Planning and Robotics

Outline of the Tutorial

• What is AI Planning?

• Planning for Persistent Autonomy

• ROSPlan I: Planning with ROS

Coffee (15.30-16.00)

• ROSPlan II: Planning with Opportunities and HRI

• Open challenges

Artificial Intelligence

Planning Group

at King’s
We focus on planning for real applications:

– Autonomous Underwater Vehicles

– Energy Technology

– Autonomous Drones and UAVs

– Ocean Liners

– Multiple Battery System Management

– Hybrid Vehicles

– Smart Buildings

– Air Traffic Control and Plane Taxiing

– Urban Traffic Control

Solving Realistic Unit Commitment Problems Using Temporal
Planning: Challenges and Solutions. ICAPS 2016

Plan-based Policies for Efficient Multiple Battery Load
Management. JAIR 2012

Efficient Macroscopic Urban Traffic Models for Reducing
Congestion: A PDDL+ Planning Approach. AAAI 2016.

Focus of Our Research

Rich Planning Models
We are pushing the research on planning with complex domains

•PDDL+ modelling

•Planners (UPMurphi, DiNO, SMTPlan+)

•Policy learning framework

•Planning with external solvers

Validation
We explore the links between planning and verification

•Plan validation (VAL)

•Plan robustness evaluation

•Domain validation

Planning with Robots
Persistent Autonomy

ROSPlan

Planning with Robots
Planning for Persistent Underwater Autonomy

Policy Learning for Autonomous Feature Tracking

Autonomous maintenance of submerged oil & gas infrastructures
EU Project PANDORA

Opportunistic Planning in Autonomous Underwater Missions.
IEEE Transactions on Automation Science and Engineering. (2017)

Toward Persistent Autonomous Intervention in a Subsea Panel.
Autonomous Robots. (2016)

Policy Learning for Autonomous Feature Tracking.
Autonomous Robots (2015)

Planning with Robots
Robot interacting with children in a toy cleaning scenario

-localisation and navigation in a crowded and changing scene
-iterative task planning in an open world
-engaging with multiple users in a dynamic collaborative task

Robotics Receptionist at King’s College
Multi-Robot Coordination

Goal: to deliver an advanced yet flexible space autonomous software
framework/system suitable for single and/or collaborative
space robotic missions

Short-Term Human Robot Interaction through Conditional
Planning and Execution. ICAPS 2017.

Artificial Intelligence Planning

Artificial Intelligence Planning

Planning is about determining actions before doing them, anticipating the

things that will need to be done and preparing for them.

If you have a goal to achieve and to do so you need to decide what to do,

when to do it and what to use, then that’s planning.

Planning is usually done by (teams of) humans: automated planning is for

when this job needs to be done fast, frequently, or is too complicated for

humans.

Where there is money to be made, pollution to reduce, productivity to

increase, resources to be managed, planning can do it.

A planner uses a model of an application domain and a description of a

specific problem (initial state and goals) and generates a plan.

Powerful heuristics are used to guide the search in huge state spaces.

AI Planning

• Use a model of the world in order to predict and anticipate its

behaviour in order to choose actions that will lead to desirable states

• Assume the world can be modelled as a finite collection of state

variables and that actions cause changes in the values of those

variables

Actions: Preconditions determine

which transitions are possible,

effects assign values to state

variables

Given
– An initial state: a set of propositions and assignments to

numeric variables,
• E.g. (at rover waypoint1) (= (energy rover) 10)

– A goal: a desired set of propositions/assignments,
• E.g. (at rover waypoint4) (have-soil-sample waypoint3)

– A set of actions each with:

• Preconditions on execution;

• Effects that describe how the world

changes upon their execution

Find
– A sequence of actions (a plan) that when applied in the initial

state leads to a state that satisfies the goal condition

(:action navigate

:parameters (?r – rover ?x ?y - waypoint)

:precondition (and (available ?r)

(at ?r ?x)

(visible ?x ?y)

(>= (energy ?r) 8))

:effect (and

(decrease (energy ?r) 8)

(not (at ?r ?x))

(at ?r ?y)))

AI Planning

The Domain file contains the actions.

The Problem file contains the instance to be solved

(i.e., the initial state and the goal state).

Different problems for the same domain.

The planner takes as input the domain D and a problem P,

and produce a plan to solve P.

PDDL Planning

Planning

• Classical planning: a plan to get to a desirable state that

satisfies some goals.

• Optimisation: minimize/maximise a cost function.

• Temporal planning: actions have a duration. Concurrency,

synchronisation, time dependent effects.

• Planning with preferences: hard and soft goals.

• Conditional planning: actions can perform observations,

and the plan contains branches.

Planning Problems: Modelling and Solving

• PDDL family of planning modelling languages

• PDDL1

• Introduced for the International Planning Competition series
(1998).

• Used as the international standard modelling language family for
planners

• Enables benchmarking and comparison across different
algorithms and domains

• PDDL2.1

• Introduced time and numeric effects

• PDDL3

• Preferences and trajectory constraints (eg: always P, sometimes
P, eventually P, etc)

• PDDL+

• Allows a larger class of mixed discrete continuous domains,
including exogenous events

Instantaneous actions, propositional conditions and effects
LAMA, HSP, FF, MetricFF, SATplan, FastDownward, (+many

others)

Temporal heuristic estimates, linear
constraints

LPG, TFD, SAPA, POPF, COLIN

Linear temporal logic
OPTIC (POPF), Hplan-P

Non-linear constraints, exogenous
events

MIP, UPMurphi, DiNo, SMTplan

Planning and Control

Frequency
(Hz)

105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6

Sensing

Control
Planning

Execution
Monitoring

Noise Inaccuracy Uncertainty Ignorance

Planning is an AI technology that seeks to select and organise

activities in order to achieve specific goals

Plan Dispatch: a controller is responsible for realising each plan action

Planning with Time: An Additional Dimension

• Processes mean time spent in states matters

Planning in Hybrid Domains

• When actions or events are performed they cause instantaneous

changes in the world

– These are discrete changes to the world state

– When an action or an event has happened it is over

• Processes are continuous changes

– Once they start they generate continuous updates in the world

state

– A process will run over time, changing the world at every instant

Holding ball

Action: drop ball

Not holding ball

Ball falling

Height over time

PDDL+: Let it go

• First drop it...

• Then watch it fall...

• And then?

(:action release

:parameters (?b – ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))

:effect (and (not (holding ?b))))

(:process fall

:parameters (?b – ball)

:precondition (and (not (holding ?b)) (>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))

(decrease (height ?b) (* #t (velocity ?b)))))

Modelling Mixed Discrete-Continuous Domains for Planning. (Fox & Long) JAIR 2006

PDDL+: See it bounce

• Bouncing...

• Now let’s plan to catch it...

(:event bounce

:parameters (?b - ball)

:precondition (and (>= (velocity ?b) 0)

(<= (height ?b) 0))

:effect (and (assign (height ?b) (* -1 (height ?b)))

(assign (velocity ?b) (* -1 (velocity ?b)))))

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))

:effect (and (holding ?b) (assign (velocity ?b) 0)))

A Valid Plan

• Let it bounce, then catch it...

• The validator can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

0.1: (release b1)

4.757: (catch b1)

Some PDDL+ Planners

• UPMurphi (https://github.com/gdellapenna/UPMurphi) [ICAPS’09]

Based on Discretise and Validate

(Baseline for adding new heuristics:
multiple battery management [JAIR’12] or urban traffic control [AAAI’16])

• DiNo (http://kcl-planning.github.io/DiNo/) [IJCAI’16]

Extend UPMurphi with TRPG heuristic for hybrid domains

• SMTPlan (http://kcl-planning.github.io/SMTPlan/) [ICAPS’16]

Based on STM encoding of PDDL+ domains

https://github.com/gdellapenna/UPMurphi
http://kcl-planning.github.io/DiNo/
http://kcl-planning.github.io/SMTPlan/

One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs

to reach a location where stable

fixed-wind flight can be achieved.

The aircraft has fans/rotors which generate

lift and which can be tilted by 90 degrees

to achieve the right velocity both vertically

and horizontally. V-22 Osprey

Vertical Take-Off

(:action start_engines

:parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0))

:effect (ascending))

(:process ascent

:parameters ()

:precondition (and (not (crashed)) (ascending))

:effect (and (increase (altitude) (* #t (- (* (v_fan) (- 1 (/ (* (* (angle) 0.0174533)

(* (angle) 0.0174533)) 2))) (g))))

(increase (distance) (* #t (* (v_fan) (/ (* (* 4 (angle)) (- 180 (angle)))

(- 40500 (* (angle) (- 180 (angle))))))))))

(:durative-action increase_angle

:parameters ()

:duration (<= ?duration (- 90 (angle)))

:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)))

:effect (and (increase (angle) (* #t 1))))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))

:effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending))

:effect (and (increase (altitude) (* #t (wind_y) 1)

(increase (distance) (* #t (wind_x) 1)))

Timed Initial Fluents

(at 5.0 (= (wind_x) 1.3))

(at 5.0 (= (wind_y) 0.2))

(at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

.. …

Planning for Persistent Autonomy

Planning on the sea

EU-FP7 PANDORA

Persistent Autonomy

for AUVs

EU-FP7 PANDORA

Persistently autonomous inspection and maintenance of an underwater installation,

such as an offshore oil and gas field

Tasks performed as part of an open-ended long-term

maintenance programme:

• Observation and inspection

• State-changing (eg valve turning)

• Maintenance and cleaning

Subject to:

• energy constraints

• inspection outcomes

• external requests

• changing environmental conditions (currents etc)

Refining the initial model

collision constraint

visibility constraint

New waypoints are generated, requiring model revision, and replanning

Center of mass of the point cloud

Rays are generated from the CoM

out to the visibility band. Waypoints

are randomly generated on the

rays within the band

Inspection Task

The PRM selects waypoints from a

biased distribution that places more

points at good viewing distances

from inspection points

Collision distance

Inspection Task

The PRM selects waypoints from a

biased distribution that places more

points at good viewing distances

from inspection points

Collision distance

Visibility distance

Inspection Task

The PRM selects waypoints from a

biased distribution that places more

points at good viewing distances

from inspection points

The PRM selects waypoints from a

biased distribution that places more

points at good viewing distances

from inspection points

Collision distance

Visibility distance

Inspection Task

Collision distance

Visibility distance

A path is planned between

waypoints from which the

inspection points can be seen

Inspection Task

• We want to achieve inspection task within limited time and energy
budget, so efficient paths are important

• Path cost is determined not only by length, but by momentum at start and
end and kinematics

Execution of planned path under

kinematic and dynamic

constraints

Inspection Task

Plans here involve

coordinated tasks and

time windows

Random Coarse Roadmap Generation Algorithm

Coarse Plan Generation

Coarse Plan Generation

Visibility Points Discovery and REPLANNING

Visibility Points Discovery and REPLANNING

Visibility Points Discovery and REPLANNING

Visibility Points Discovery and REPLANNING

Visibility Points Discovery and REPLANNING

Visibility Points Discovery and REPLANNING

Visibility Points Discovery and REPLANNING

Physical Tests at Fort William (Scotland)

Temporal Planning Model

DOMAIN PROBLEM

Temporal Planning Model
Plans are found using POPF temporal planner

Timed Initial Fluents can be used to set time windows:

(at 10.0 (can_observe wp5))

(at 25.00 (not (can_observe wp5)))

(at 658 (canRecharge dock3))

(at 1200 (not (canRecharge dock3)))

.. …

ROSPlan: Planning in the Robot Operating System

ROS Basics

ROS offers a message passing interface that provides inter-process
communication.

A ROS system is composed of nodes, which pass messages, usually in two
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

ROS Basics

ROS offers a message passing interface that provides inter-process
communication.

A ROS system is composed of nodes, which pass messages, usually in two
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

ROS Basics

ROS offers a message passing interface that provides inter-process
communication.

A ROS system is composed of nodes, which pass messages, usually in two
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

<launch>
 <include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
 <include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>

 <arg name="global_frame_id" default="map"/>
 <arg name="odom_topic" default="odom" />
 <arg name="laser_topic" default="scan" />

 <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
 <rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
 <rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />
 <rosparam file="$(find turtlebot_navigation)/param/local_costmap_params.yaml" command="load" />
 <remap from="cmd_vel" to="navigation_velocity_smoother/raw_cmd_vel"/>
 <remap from="odom" to="$(arg odom_topic)"/>
 <remap from="scan" to="$(arg laser_topic)"/>
 </node>
</launch>

ROS Basics

ROS offers a message passing interface that provides inter-process
communication.

A ROS system is composed of nodes, which pass messages, usually in two
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

The actionlib package standardizes the interface for pre-emptable tasks.
For example:
- navigation,
- performing a laser scan
- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for sending
task:
- goals
- feedback
- result

ROS Basics

Aside from numerous tools, Actionlib provides standard messages for sending
task:
- goals
- feedback
- result

move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose
 std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
 geometry_msgs/Pose pose
 geometry_msgs/Point position
 float64 x
 float64 y
 float64 z
 geometry_msgs/Quaternion orientation
 float64 x
 float64 y
 float64 z
 float64 w

ROSPlan Basics

The ROSPlan package provides a standard interface for PDDL planners in ROS.

The purpose of the ROSPlan package is to integrate planners within a ROS
system without having to write an architecture from scratch.

planner

plan_dispatcher

knowledge_base

plan_parser

problem_generation

Plan Execution 1: Very simple Dispatch

The most basic structure.
- The plan is generated.
- The plan is executed.

Plan Execution 1: Very simple Dispatch

The most basic structure.
- The plan is generated.
- The plan is executed.

The red boxes are included in
ROSPlan. They correspond to
ROS nodes.

The domain and problem file can
be supplied
- in launch parameters
- as ROS service parameters

Plan Execution 1: Very simple Dispatch

rosplan_dispatch_msgs/CompletePlan
ActionDispatch[] plan
 int32 action_id
 string name
 diagnostic_msgs/KeyValue[] parameters
 string key
 string value
 float32 duration
 float32 dispatch_time

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution
- timed execution
- Petri-Net plans
- Conditional Contingent Temporal Constraint Network.
- etc.

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

An action in the plan is stored as a ROS message ActionDispatch, which
corresponds to a PDDL action.

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

The ActionDispatch message is received by a listening interface node, and
becomes a goal for control.

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

move_base/MoveBaseGoal
geometry_msgs/PoseStamped
target_pose
 std_msgs/Header header
 ...
 geometry_msgs/Pose pose
 geometry_msgs/Point position
 float64 x
 float64 y
 float64 z
 geometry_msgs/Quaternion orientation
 ...

ActionDispatch
 action_id = 0
 name = goto_waypoint
 diagnostic_msgs/KeyValue[] parameters
 key = “wp”
 value = “wp0”
 duration = 10.000
 dispatch_time = 0.000

0.000: (goto_waypoint wp0) [10.000]
10.01: (observe ip3) [5.000]
15.02: (grasp_object box4) [60.000]

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

Feedback is returned to the simple dispatcher (action success or failure) through
a ROS message ActionFeedback.

Plan Execution Failure

This form of simple dispatch has some problems. The robot often exhibits
zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan fails, but the robot doesn't notice.

Bad behaviour 1: Action Failure

An action might never terminate. For example:
- a navigation action that cannot find a path to its goal.
- a grasp action that allows retries.

At some point the robot must give up.

Bad behaviour 1: Action Failure

An action might never terminate. For example:
- a navigation action that cannot find a path to its goal.
- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan again,
from the new current state, without human intervention.

The problem file must be regenerated.

PDDL Model

To generate the problem file automatically, the agent must
store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node
called the Knowledge Base.

PDDL Model

To generate the problem file automatically, the agent must
store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node
called the Knowledge Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values
 string key
 string value
float64 function_value
bool is_negative

PDDL Model

To generate the problem file automatically, the agent must
store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node
called the Knowledge Base.

From this the initial state of a new planning problem can
be created.

ROSPlan contains a node which will generate a problem
file for the ROSPlan planning node.

PDDL Model

The model must be continuously updated from sensor data.

For example a new ROS node:
1. subscribes to odometry data.
2. compares odometry to waypoints from the PDDL model.
3. adjusts the predicate (robot_at ?r ?wp) in the Knowledge
Base.

PDDL Model

The model must be continuously updated from sensor data.

For example a new ROS node:
1. subscribes to odometry data.
2. compares odometry to waypoints from the PDDL model.
3. adjusts the predicate (robot_at ?r ?wp) in the Knowledge
Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values
 string key
 string value
float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
 geometry_msgs/Pose pose
 geometry_msgs/Point position
 geometry_msgs/Quaternion orientation
 float64[36] covariance
geometry_msgs/TwistWithCovariance twist
 geometry_msgs/Twist twist
 geometry_msgs/Vector3 linear
 geometry_msgs/Vector3 angular
 float64[36] covariance

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute the
plan for a long time without purpose.

Bad Behaviour 2: Plan Failure

There should be
diagnosis at the
level of the plan.

If the plan will fail
in the future, the
robot should not
continue to
execute the plan
for a long time
without purpose.

Bad Behaviour 2: Plan Failure

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain,
and the roadmap might not be correct.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around
to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

AS

AE

BS BE

CS CE

INV
()PS

ES EE

PE

PDDL MODEL

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

AS

AE

BS BE

CS CE

INV
()PS

ES EE

PE

PDDL MODEL

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

AS

AE

BS BE

CS CE

INV
()PS

ES EE

PE

PDDL MODEL

Bad Behaviour 2: Plan Failure

ROSPlan validates using VAL. [Fox et al. 2005]

ROSPlan: Default Configuration

Now the system is more
complex:
- PDDL model is
continuously updated from
sensor data.
- problem file is automatically
generated.

ROSPlan: Default Configuration

Now the system is more
complex:
- PDDL model is
continuously updated from
sensor data.
- problem file is automatically
generated.
- the planner generates a
plan.
- the plan is dispatched
action-by-action.

ROSPlan: Default Configuration

Now the system is more
complex:
- PDDL model is
continuously updated from
sensor data.
- problem file is automatically
generated.
- the planner generates a
plan.
- the plan is dispatched
action-by-action.
- feedback on action success
and failure.
- the plan is validated against
the current model.

Plan Execution 2: Very Simple Temporal
Dispatch

The real world requires a temporal and
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

Plan Execution 2: Very Simple Temporal
Dispatch

The real world requires a temporal and
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

Plan Execution 2: Very Simple Temporal
Dispatch

The real world requires a temporal and
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

Plan Execution 2: Very Simple Temporal
Dispatch

The real world requires a temporal and
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

Plan Execution 2: Very Simple Temporal
Dispatch

The real world requires a temporal and
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

The plan is not only less efficient, but it
may become incorrect and unsafe!

Plan Execution 2: Very Simple Temporal
Dispatch

The real world requires a temporal and
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

The plan is not only less efficient, but it
may become incorrect and unsafe!

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could
dispatch actions, while respecting the
causal ordering between actions.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could
dispatch actions, while respecting the
causal ordering between actions.

However, some plans require temporal
coordination between actions, and the
controllable durations might be very far
apart.

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could
dispatch actions, while respecting the
causal ordering between actions.

However, some plans require temporal
coordination between actions, and the
controllable durations might be very far
apart.

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could
dispatch actions, while respecting the
causal ordering between actions.

However, some plans require temporal
coordination between actions, and the
controllable durations might be very far
apart.

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could
dispatch actions, while respecting the
causal ordering between actions.

However, some plans require temporal
coordination between actions, and the
controllable durations might be very far
apart.

Temporal Constraints

The temporal plan in which every action and duration can be controlled could
be represented as a Simple Temporal Network.

The real upper and lower bounds, and ordering constraints on actions can be
represented explicitly.

With this representation, the system is able to dispatch actions at times to
maintain the consistency of the STN.

observe
s

illuminate
sgoto_waypoint

e

goto_waypoint
e

goto_waypoint
s

observe
e

illuminate
s

Temporal Constraints

The temporal plan in which every action and duration can be controlled could
be represented as a Simple Temporal Network.

The real upper and lower bounds, and ordering constraints on actions can be
represented explicitly.

With this representation, the system is able to dispatch actions at times to
maintain the consistency of the STN.

observe
s

illuminate
sgoto_waypoint

e

goto_waypoint
e

goto_waypoint
s

[10,10]

observe
e

illuminate
s

[0,30][0,-] [0,-]

[0,-]

[5,-]
[2,-]

Temporal Constraints

The temporal plan with uncontrollable durations can also be represented as a
Temporal Plan Network (TPN). [Vidal & Fargier 1999]

observe
s

illuminate
sgoto_waypoint

e

goto_waypoint
e

goto_waypoint
s

[10,10]

observe
e

illuminate
s

[0,30][0,-] [0,-]

[0,-]

[5,-]
[2,-]

Temporal Constraints

The temporal plan with uncontrollable durations can also be represented as a
Temporal Plan Network (TPN). [Vidal & Fargier 1999]

The time-points of a TPN are divided into activated time-points whose dispatch
time can be chosen by the agent, and received time-points whose time is
unpredictable.

observe
s

illuminate
sgoto_waypoint

e

goto_waypoint
e

goto_waypoint
s

[10,10]

observe
e

illuminate
s

[0,30][0,-] [0,-]

[0,-]

[5,-]
[2,-]

Temporal Constraints

The temporal plan with uncontrollable durations can also be represented as a
Temporal Plan Network (TPN). [Vidal & Fargier 1999]

The time-points of a TPN are divided into activated time-points whose dispatch
time can be chosen by the agent, and received time-points whose time is
unpredictable.

The Simple Temporal Problem under Uncertainty (STPU) described by a TPN
might be strongly, weakly, or dynamically controllable. [Ciamatti, Micheli et al. 2016]

observe
s

illuminate
sgoto_waypoint

e

goto_waypoint
e

goto_waypoint
s

[10,10]

observe
e

illuminate
s

[0,30][0,-] [0,-]

[0,-]

[5,-]
[2,-]

STPUs: Strong controllability

An STPU is strongly controllable iff:
- the agent can commit to a time for all activated time-points,
- such that for any possible time for received time points,
- the temporal constraints are not violated.

STPUs: Strong controllability

An STPU is strongly controllable iff:
- the agent can commit to a time for all activated time-points,
- such that for any possible time for received time points,
- the temporal constraints are not violated.

Setting t(b1) == t(b2) will always
obey the temporal constraints.

STPUs: Strong controllability

An STPU is strongly controllable iff:
- the agent can commit to a time for all activated time-points,
- such that for any possible time for received time points,
- the temporal constraints are not violated.

The STPU is not strongly controllable, but it is obviously executable.
We need dynamic controllability.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:
- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:
- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

Not all problems will have solutions which have any kind of controllability. This
does not mean they are impossible.

To reason about these kinds of issues we need to use a plan representation
sufficient to capture the controllable and uncontrollable durations, causal
orderings, and temporal constraints.

Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation
sufficient to capture the controllable and uncontrollable durations, causal
orderings, and temporal constraints.

The representation of a plan is coupled with the
choice of dispatcher.

The problem generation and planner are not
necessarily bound by the choice of
representation.

Plan Execution 3: Conditional Dispatch

Uncertainty and lack of knowledge is a huge part of AI Planning for Robotics.

- Actions might fail or succeed.
- The effects of an action can be non-deterministic.
- The environment is dynamic and changing.
- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in AI Planning

- The environment is dynamic and changing.
- The environment is often initially full of unknowns.

Uncertainty in AI Planning

Some uncertainty
can be handled at
planning time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional
Planning with
Contingent Planners.
(e.g. ROSPlan with
Contingent-FF)

Uncertainty in AI Planning

Some uncertainty
can be handled at
planning time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional
Planning with
Contingent Planners.
(e.g. ROSPlan with
Contingent-FF)

Uncertainty in AI Planning

Some uncertainty
can be handled at
planning time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional
Planning with
Contingent Planners.
(e.g. ROSPlan with
Contingent-FF)

Uncertainty in AI Planning

Some uncertainty
can be handled at
planning time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional
Planning with
Contingent Planners.
(e.g. ROSPlan with
Contingent-FF)

Uncertainty in AI Planning

Some uncertainty
can be handled at
planning time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional
Planning with
Contingent Planners.
(e.g. ROSPlan with
Contingent-FF)

Uncertainty in AI Planning

Human Robot Interaction is filled with uncertainties.

Plan Execution 4: Temporal and Conditional
Dispatch together

Robotics domains require a combination of temporal and conditional
reasoning. Combining these two kinds of uncertainty can result in very
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [Claßen et al., 2012]

- Petri-Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and Conditional
Dispatch together

Robotics domains require a combination of temporal and conditional
reasoning. Combining these two kinds of uncertainty can result in very
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [Claßen et al., 2012]

- Petri-Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and Conditional
Dispatch together

Robotics domains require a combination of temporal and conditional
reasoning. Combining these two kinds of uncertainty can result in very
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [Claßen et al., 2012]

- Petri-Net Plans. [Ziparo et al. 2011]

ROSPlan is integrated with the PNPRos library for the representation and
execution of Petri-Net plans. [Sanelli et al. 2017]

Summary of Very Simple Plan Execution

Plan Execution
depends upon many
components in the
system. Changing
any one of which will
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or fail.

Summary of Very Simple Plan Execution

Plan Execution
depends upon many
components in the
system. Changing
any one of which will
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or fail.

Summary of Very Simple Plan Execution

Plan Execution
depends upon many
components in the
system. Changing
any one of which will
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or fail.

Summary of Very Simple Plan Execution

Plan Execution
depends upon many
components in the
system. Changing
any one of which will
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or fail.

Summary of Very Simple Plan Execution

Plan Execution
depends upon many
components in the
system. Changing
any one of which will
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or fail.

The execution of a
plan is an emergent
behaviour of the
whole system.

Summary of Very Simple Plan Execution

Plan Execution
depends upon many
components in the
system. Changing
any one of which will
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or fail.

The execution of a
plan is an emergent
behaviour of the
whole system.

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour
might move toward achievement of multiple goals together.

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour
might move toward achievement of multiple goals together.

The robot can also have:
- long-term goals (plans are abstract, with horizons of weeks)
- but also short-term goals (plans are detailed, with horizons of minutes)

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour
might move toward achievement of multiple goals together.

The robot can also have:
- long-term goals (plans are abstract, with horizons of weeks)
- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning
process, and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.

Dispatching more than a Single Plan

How do you plan from future situations that you can't predict?

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search
scenario. For tracking targets, tidying household objects, or interacting
with people.

Dispatching more than a Single Plan

Dispatching more than a Single Plan

Hierarchical and Recursive Planning

For each task we generate a tactical plan.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints
are used in the generation of the strategic problem.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints
are used in the generation of the strategic problem.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints
are used in the generation of the strategic problem.

A strategic plan is generated that does not violate the time and resource
constraints of the whole mission.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical
problem is regenerated, replanned, and executed.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical
problem is regenerated, replanned, and executed.

The tactical mission is
executed by a complete
planning system.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic Planning

There might also be unknowns that we don't expect to discover.

For example, new opportunities are found during execution, and the robot
should exploit them.

Dispatching more Plans: Opportunistic Planning

v

2011 Banff 5 of 10 lines parted.
2011 Volve 2 of 9 lines parted
2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted a

distance, riser broken
2010 Jubarte 3 lines parted between 2008 and 2010.
2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a

distance, riser broken
2009 Hai Yang Shi You Entire yoke mooring column

collapsed; vessel adrift, riser broken.
2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a

distance, riser broken.
2002 Girassol buoy 3 (+2) of 9 lines parted, no damage to

offloading lines (2 later)

High Impact Low-Probability Events
(HILPs)

- the probability distribution is unknown
- cannot be anticipated
- our example is chain following

If you see an unexpected chain, it's a good idea to
investigate...

Dispatching more Plans: Opportunistic Planning

In PANDORA we planned and executed
missions over long-term horizons (days or
weeks)

Our planning strategy was based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore used
estimated durations for the actions that
were 95th percentile of the normal
distribution.

The resulting overestimation of actions builds a free time window

Dispatching more Plans: Opportunistic Planning

In PANDORA we planned and executed
missions over long-term horizons (days or
weeks)

Our planning strategy was based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore used
estimated durations for the actions that
were 95th percentile of the normal
distribution.

The resulting overestimation of actions builds a free time window

Dispatching more Plans: Opportunistic Planning

In PANDORA we planned and executed
missions over long-term horizons (days or
weeks)

Our planning strategy was based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore used
estimated durations for the actions that
were 95th percentile of the normal
distribution.

The resulting overestimation of actions builds a free time window

Dispatching more Plans: Opportunistic Planning

New plans are generated for the opportunistic
goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

Dispatching more Plans: Opportunistic Planning

New plans are generated for the opportunistic
goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution of
a plan fragment, then the currently executing plan
can be pushed onto the stack and a new plan can
be executed.

[Cashmore et al. 2015]

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the
advancement towards multiple goals. [Mudrova et al. 2016]

Questions?

What is the glue in a Plan Execution framework that is always
required?

How do we modify a domain model during execution?

Which parts of a domain model are transferable to other tasks?

Which parts of a domain model can be generated automatically

- From a description of the robot?

- From a source ontology?

How can we get rid of the planning expert?

- Can a description of a task be written by a non-expert, and a
generic domain extended?

