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Outline of  the Tutorial

• What is AI Planning?

• Planning for Persistent Autonomy

• ROSPlan I: Planning with ROS

Coffee  (15.30-16.00)

• ROSPlan II: Planning with Opportunities and HRI

• Open challenges



Artificial Intelligence 

Planning Group

at King’s
We focus on planning for real applications:

– Autonomous Underwater Vehicles

– Energy Technology

– Autonomous Drones and UAVs

– Ocean Liners

– Multiple Battery System Management

– Hybrid Vehicles

– Smart Buildings

– Air Traffic Control and Plane Taxiing

– Urban Traffic Control

Solving Realistic Unit Commitment Problems Using Temporal 
Planning: Challenges and Solutions. ICAPS 2016

Plan-based Policies for Efficient Multiple Battery Load 
Management. JAIR 2012

Efficient Macroscopic Urban Traffic Models for Reducing 
Congestion: A PDDL+ Planning Approach. AAAI 2016.



Focus of Our Research

Rich Planning Models
We are pushing the research on planning with complex domains

•PDDL+ modelling

•Planners (UPMurphi, DiNO, SMTPlan+)

•Policy learning framework

•Planning with external solvers

Validation
We explore the links between planning and verification

•Plan validation (VAL)

•Plan robustness evaluation

•Domain validation

Planning with Robots
Persistent Autonomy 

ROSPlan



Planning with Robots
Planning for Persistent Underwater Autonomy

Policy Learning for Autonomous Feature Tracking

Autonomous maintenance of submerged oil & gas infrastructures
EU Project PANDORA

Opportunistic Planning in Autonomous Underwater Missions.
IEEE Transactions on Automation Science and Engineering. (2017)

Toward Persistent Autonomous Intervention in a Subsea Panel.
Autonomous Robots. (2016)

Policy Learning for Autonomous Feature Tracking.
Autonomous Robots (2015)



Planning with Robots
Robot interacting with children in a toy cleaning scenario

-localisation and navigation in a crowded and changing scene
-iterative task planning in an open world
-engaging with multiple users in a dynamic collaborative task

Robotics Receptionist at King’s College  
Multi-Robot Coordination

Goal: to deliver an advanced yet flexible space autonomous software 
framework/system suitable for single and/or collaborative
space robotic missions

Short-Term Human Robot Interaction through Conditional 
Planning and Execution. ICAPS 2017.



Artificial Intelligence Planning



Artificial Intelligence Planning

Planning is about determining actions before doing them, anticipating the 

things that will need to be done and preparing for them.

If you have a goal to achieve and to do so you need to decide what to do, 

when to do it and what to use, then that’s planning.

Planning is usually done by (teams of) humans: automated planning is for 

when this job needs to be done fast, frequently, or is too complicated for 

humans.

Where there is money to be made, pollution to reduce, productivity to 

increase, resources to be managed, planning can do it.

A planner uses a model of an application domain and a description of a 

specific problem (initial state and goals) and generates a plan.

Powerful heuristics are used to guide the search in huge state spaces.



AI Planning

• Use a model of the world in order to predict and anticipate its 

behaviour in order to choose actions that will lead to desirable states

• Assume the world can be modelled as a finite collection of state 

variables and that actions cause changes in the values of those 

variables

Actions: Preconditions determine 

which transitions are possible, 

effects assign values to state 

variables



Given
– An initial state: a set of propositions and assignments to 

numeric variables,
• E.g. (at rover waypoint1) (= (energy rover) 10)

– A goal: a desired set of propositions/assignments,
• E.g.   (at rover waypoint4) (have-soil-sample waypoint3)

– A set of actions each with:

• Preconditions on execution;

• Effects that describe how the world 

changes upon their execution

Find
– A sequence of actions (a plan) that when applied in the initial 

state leads to a state that satisfies the goal condition

(:action navigate

:parameters (?r – rover ?x ?y - waypoint)

:precondition (and (available ?r)

(at ?r ?x)

(visible ?x ?y)

(>= (energy ?r) 8))

:effect (and

(decrease (energy ?r) 8) 

(not (at ?r ?x ))

(at ?r ?y)))

AI Planning



The Domain file contains the actions.

The Problem file contains the instance to be solved 

(i.e., the initial state and the goal state).

Different problems for the same domain.

The planner takes as input the domain D and a problem P, 

and produce a plan to solve P.

PDDL Planning



Planning

• Classical planning: a plan to get to a desirable state that              

satisfies some goals.

• Optimisation: minimize/maximise a cost function.

• Temporal planning: actions have a duration. Concurrency, 

synchronisation, time dependent effects.

• Planning with preferences: hard and soft goals.

• Conditional planning: actions can perform observations, 

and the plan contains branches. 



Planning Problems: Modelling and Solving

• PDDL family of planning modelling languages

• PDDL1

• Introduced for the International Planning Competition series 
(1998).

• Used as the international standard modelling language family for 
planners

• Enables benchmarking and comparison across different 
algorithms and domains

• PDDL2.1

• Introduced time and numeric effects

• PDDL3

• Preferences and trajectory constraints (eg: always P, sometimes 
P, eventually P, etc)

• PDDL+

• Allows a larger class of mixed discrete continuous domains, 
including exogenous events

Instantaneous actions, propositional conditions and effects
LAMA, HSP, FF,  MetricFF,  SATplan, FastDownward, (+many 

others)

Temporal heuristic estimates, linear 
constraints 

LPG, TFD, SAPA, POPF, COLIN

Linear temporal logic 
OPTIC (POPF),  Hplan-P

Non-linear constraints, exogenous 
events

MIP,  UPMurphi, DiNo, SMTplan



Planning and Control

Frequency
(Hz)

105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6

Sensing

Control
Planning

Execution 
Monitoring

Noise Inaccuracy Uncertainty Ignorance

Planning is an AI technology that seeks to select and organise 

activities in order to achieve specific goals

Plan Dispatch: a controller  is responsible for realising each plan action



Planning with Time: An Additional Dimension

• Processes mean time spent in states matters



Planning in Hybrid Domains

• When actions or events are performed they cause instantaneous 

changes in the world

– These are discrete changes to the world state

– When an action or an event has happened it is over

• Processes are continuous changes

– Once they start they generate continuous updates in the world 

state

– A process will run over time, changing the world at every instant

Holding ball

Action: drop ball

Not holding ball

Ball falling

Height over time



PDDL+: Let it go

• First drop it...

• Then watch it fall...

• And then?

(:action release

:parameters (?b – ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))

:effect (and (not (holding ?b))))

(:process fall

:parameters (?b – ball)

:precondition (and (not (holding ?b)) (>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))

(decrease (height ?b) (* #t (velocity ?b)))))

Modelling Mixed Discrete-Continuous Domains for Planning. (Fox & Long) JAIR 2006



PDDL+: See it bounce

• Bouncing...

• Now let’s plan to catch it...

(:event bounce

:parameters (?b - ball)

:precondition (and  (>= (velocity ?b) 0) 

(<= (height ?b) 0))

:effect (and (assign (height ?b) (* -1 (height ?b)))

(assign (velocity ?b) (* -1 (velocity ?b)))))

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))

:effect (and (holding ?b) (assign (velocity ?b) 0)))



A Valid Plan

• Let it bounce, then catch it...

• The validator                      can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

0.1: (release b1)

4.757: (catch b1)







Some PDDL+ Planners

• UPMurphi (https://github.com/gdellapenna/UPMurphi)    [ICAPS’09]

Based on Discretise and Validate 

(Baseline for adding new heuristics: 
multiple battery management [JAIR’12] or urban traffic control [AAAI’16])

• DiNo (http://kcl-planning.github.io/DiNo/)  [IJCAI’16]

Extend UPMurphi with TRPG heuristic for hybrid domains

• SMTPlan (http://kcl-planning.github.io/SMTPlan/)  [ICAPS’16]

Based on STM encoding of PDDL+ domains

https://github.com/gdellapenna/UPMurphi
http://kcl-planning.github.io/DiNo/
http://kcl-planning.github.io/SMTPlan/


One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs

to reach a location where stable 

fixed-wind flight can be achieved.

The aircraft has fans/rotors which generate

lift and which can be tilted by 90 degrees

to achieve the right velocity both vertically

and horizontally. V-22 Osprey



Vertical Take-Off

(:action start_engines

:parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0) )

:effect (ascending))

(:process ascent

:parameters ()

:precondition (and (not (crashed)) (ascending) )

:effect (and (increase (altitude) (* #t (- (* (v_fan) (- 1 (/ (* (* (angle) 0.0174533)  

(* (angle) 0.0174533) ) 2) ) ) (g)) ) )

(increase (distance) (* #t (* (v_fan) (/ (* (* 4 (angle)) (- 180 (angle))) 

(- 40500 (* (angle) (- 180 (angle)))) ) ) ))))

(:durative-action increase_angle

:parameters ()

:duration (<= ?duration (- 90 (angle)) )

:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)) )

:effect (and (increase (angle) (* #t 1)) ))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))

:effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending) )

:effect (and (increase (altitude) (* #t (wind_y) 1)  

(increase (distance) (* #t (wind_x) 1)))

Timed Initial Fluents

(at 5.0 (= (wind_x) 1.3))

(at 5.0 (= (wind_y) 0.2))

(at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

.. …



Planning for Persistent Autonomy



Planning on the sea

EU-FP7 PANDORA 

Persistent Autonomy

for AUVs



EU-FP7 PANDORA

Persistently autonomous inspection and maintenance of an underwater installation, 

such as an offshore oil and gas field

Tasks performed as part of an open-ended long-term 

maintenance programme:

• Observation and inspection

• State-changing (eg valve turning)

• Maintenance and cleaning

Subject to:

• energy constraints

• inspection outcomes

• external requests

• changing environmental conditions (currents etc)



Refining the initial model

collision constraint

visibility constraint

New waypoints are generated, requiring model revision, and replanning

Center of mass of the point cloud

Rays are generated from the CoM

out to the visibility band. Waypoints 

are randomly generated on the 

rays within the band 



Inspection Task

The PRM selects waypoints from a 

biased distribution that places more 

points at good viewing distances 

from inspection points



Collision distance
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Collision distance

Visibility distance
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The PRM selects waypoints from a 

biased distribution that places more 
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The PRM selects waypoints from a 

biased distribution that places more 

points at good viewing distances 

from inspection points

Collision distance

Visibility distance

Inspection Task



Collision distance

Visibility distance

A path is planned between 

waypoints from which the 

inspection points can be seen

Inspection Task



• We want to achieve inspection task within limited time and energy 
budget, so efficient paths are important

• Path cost is determined not only by length, but by momentum at start and 
end and kinematics

Execution of planned path under 

kinematic and dynamic 

constraints

Inspection Task

Plans here involve 

coordinated tasks and 

time windows





Random Coarse Roadmap Generation Algorithm



Coarse Plan Generation



Coarse Plan Generation



Visibility Points Discovery and REPLANNING
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Visibility Points Discovery and REPLANNING



Visibility Points Discovery and REPLANNING



Visibility Points Discovery and REPLANNING



Physical Tests at Fort William (Scotland)



Temporal Planning Model

DOMAIN PROBLEM



Temporal Planning Model
Plans are found using POPF temporal planner

Timed Initial Fluents can be used to set time windows:

(at 10.0 (can_observe wp5))

(at 25.00 (not (can_observe wp5)))

(at 658 (canRecharge dock3))

(at 1200 (not (canRecharge dock3)))

.. …



ROSPlan: Planning in the Robot Operating System



  

ROS Basics

ROS offers a message passing interface that provides inter-process 
communication.

A ROS system is composed of nodes, which pass messages, usually in two 
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.
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ROS Basics

ROS offers a message passing interface that provides inter-process 
communication.

A ROS system is composed of nodes, which pass messages, usually in two 
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

<launch>
  <include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
  <include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>

  <arg name="global_frame_id" default="map"/>
  <arg name="odom_topic" default="odom" />
  <arg name="laser_topic" default="scan" />

  <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
    <rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
    <rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />   
    <rosparam file="$(find turtlebot_navigation)/param/local_costmap_params.yaml" command="load" />   
    <remap from="cmd_vel" to="navigation_velocity_smoother/raw_cmd_vel"/>
    <remap from="odom" to="$(arg odom_topic)"/>
    <remap from="scan" to="$(arg laser_topic)"/>
  </node>
</launch>



  

ROS Basics

ROS offers a message passing interface that provides inter-process 
communication.

A ROS system is composed of nodes, which pass messages, usually in two 
forms:
1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

The actionlib package standardizes the interface for pre-emptable tasks.
For example:
- navigation,
- performing a laser scan
- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for sending 
task:
- goals
- feedback
- result



  

ROS Basics

Aside from numerous tools, Actionlib provides standard messages for sending 
task:
- goals
- feedback
- result

move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose
  std_msgs/Header header
    uint32 seq
    time stamp
    string frame_id
  geometry_msgs/Pose pose
    geometry_msgs/Point position
      float64 x
      float64 y
      float64 z
    geometry_msgs/Quaternion orientation
      float64 x
      float64 y
      float64 z
      float64 w



  

ROSPlan Basics

The ROSPlan package provides a standard interface for PDDL planners in ROS.

The purpose of the ROSPlan package is to integrate planners within a ROS 
system without having to write an architecture from scratch.

planner

plan_dispatcher

knowledge_base

plan_parser

problem_generation



  

Plan Execution 1: Very simple Dispatch

The most basic structure.
- The plan is generated.
- The plan is executed.



  

Plan Execution 1: Very simple Dispatch

The most basic structure.
- The plan is generated.
- The plan is executed.

The red boxes are included in 
ROSPlan. They correspond to 
ROS nodes.

The domain and problem file can 
be supplied
- in launch parameters
- as ROS service parameters



  

Plan Execution 1: Very simple Dispatch

rosplan_dispatch_msgs/CompletePlan
ActionDispatch[] plan
  int32 action_id
  string name
  diagnostic_msgs/KeyValue[] parameters
    string key
    string value
  float32 duration
  float32 dispatch_time



  

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution
- timed execution
- Petri-Net plans
- Conditional Contingent Temporal Constraint Network.
- etc.
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3. Wait for the action to complete.
4. GOTO 1.



  

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

An action in the plan is stored as a ROS message ActionDispatch, which 
corresponds to a PDDL action.



  

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

The ActionDispatch message is received by a listening interface node, and 
becomes a goal for control.



  

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

move_base/MoveBaseGoal
geometry_msgs/PoseStamped 
target_pose
  std_msgs/Header header
  ...
  geometry_msgs/Pose pose
    geometry_msgs/Point position
      float64 x
      float64 y
      float64 z
    geometry_msgs/Quaternion orientation
       ...

ActionDispatch
  action_id = 0
  name = goto_waypoint
  diagnostic_msgs/KeyValue[] parameters
    key = “wp”
    value = “wp0”
  duration = 10.000
  dispatch_time = 0.000

0.000:  (goto_waypoint wp0) [10.000]
10.01: (observe ip3) [5.000]
15.02: (grasp_object box4) [60.000]



  

Dispatch Loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.
4. GOTO 1.

Feedback is returned to the simple dispatcher (action success or failure) through 
a ROS message ActionFeedback.



  

Plan Execution Failure

This form of simple dispatch has some problems. The robot often exhibits 
zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan fails, but the robot doesn't notice.



  

Bad behaviour 1: Action Failure

An action might never terminate. For example:
- a navigation action that cannot find a path to its goal.
- a grasp action that allows retries.

At some point the robot must give up.



  

Bad behaviour 1: Action Failure

An action might never terminate. For example:
- a navigation action that cannot find a path to its goal.
- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan again, 
from the new current state, without human intervention.

The problem file must be regenerated.



  

PDDL Model

To generate the problem file automatically, the agent must 
store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 
called the Knowledge Base.



  

PDDL Model

To generate the problem file automatically, the agent must 
store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 
called the Knowledge Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values
  string key
  string value
float64 function_value
bool is_negative



  

PDDL Model

To generate the problem file automatically, the agent must 
store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 
called the Knowledge Base.

From this the initial state of a new planning problem can 
be created.

ROSPlan contains a node which will generate a problem 
file for the ROSPlan planning node.



  

PDDL Model

The model must be continuously updated from sensor data.

For example a new ROS node:
1. subscribes to odometry data.
2. compares odometry to waypoints from the PDDL model.
3. adjusts the predicate (robot_at ?r ?wp) in the Knowledge 
Base.



  

PDDL Model

The model must be continuously updated from sensor data.

For example a new ROS node:
1. subscribes to odometry data.
2. compares odometry to waypoints from the PDDL model.
3. adjusts the predicate (robot_at ?r ?wp) in the Knowledge 
Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values
  string key
  string value
float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
  geometry_msgs/Pose pose
    geometry_msgs/Point position
    geometry_msgs/Quaternion orientation
  float64[36] covariance
geometry_msgs/TwistWithCovariance twist
  geometry_msgs/Twist twist
    geometry_msgs/Vector3 linear
    geometry_msgs/Vector3 angular
  float64[36] covariance



  

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.



  

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE



  

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute the 
plan for a long time without purpose.



  

Bad Behaviour 2: Plan Failure

There should be 
diagnosis at the 
level of the plan.

If the plan will fail 
in the future, the 
robot should not 
continue to 
execute the plan 
for a long time 
without purpose.



  

Bad Behaviour 2: Plan Failure

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain, 
and the roadmap might not be correct.



  

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around 
to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.



  

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.
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Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.
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PDDL MODEL



  

Bad Behaviour 2: Plan Failure

ROSPlan validates using VAL. [Fox et al. 2005]



  

ROSPlan: Default Configuration

Now the system is more 
complex:
- PDDL model is 
continuously updated from 
sensor data.
- problem file is automatically 
generated.
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ROSPlan: Default Configuration

Now the system is more 
complex:
- PDDL model is 
continuously updated from 
sensor data.
- problem file is automatically 
generated.
- the planner generates a 
plan.
- the plan is dispatched 
action-by-action.
- feedback on action success 
and failure.
- the plan is validated against 
the current model.



  

Plan Execution 2: Very Simple Temporal 
Dispatch

The real world requires a temporal and 
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal 
constraints, and try to dispatch the plan 
as a sequence of actions?
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Plan Execution 2: Very Simple Temporal 
Dispatch

The real world requires a temporal and 
numeric model:
- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal 
constraints, and try to dispatch the plan 
as a sequence of actions?

The plan is not only less efficient, but it 
may become incorrect and unsafe!

The plan execution loop could instead 
dispatch actions at their estimated 
timestamps.



  

Temporal Constraints

The plan execution loop could instead 
dispatch actions at their estimated 
timestamps.

However, in the real world there are 
many uncontrollable durations and 
events. The estimated duration of 
actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: clean_chain wp2) [60.0]
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Temporal Constraints

The temporal plan in which every action and duration can be controlled could 
be represented as a Simple Temporal Network.

The real upper and lower bounds, and ordering constraints on actions can be 
represented explicitly.

With this representation, the system is able to dispatch actions at times to 
maintain the consistency of the STN.
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Temporal Constraints

The temporal plan with uncontrollable durations can also be represented as a 
Temporal Plan Network (TPN). [Vidal & Fargier 1999]
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The temporal plan with uncontrollable durations can also be represented as a 
Temporal Plan Network (TPN). [Vidal & Fargier 1999]
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Temporal Constraints

The temporal plan with uncontrollable durations can also be represented as a 
Temporal Plan Network (TPN). [Vidal & Fargier 1999]

The time-points of a TPN are divided into activated time-points whose dispatch 
time can be chosen by the agent, and received time-points whose time is 
unpredictable.

The Simple Temporal Problem under Uncertainty (STPU) described by a TPN 
might be strongly, weakly, or dynamically controllable. [Ciamatti, Micheli et al. 2016]

observe
s

illuminate
sgoto_waypoint

e

goto_waypoint
e

goto_waypoint
s

[10,10]

observe
e

illuminate
s

[0,30][0,-] [0,-]

[0,-]

[5,-]
[2,-]



  

STPUs: Strong controllability

An STPU is strongly controllable iff:
- the agent can commit to a time for all activated time-points,
- such that for any possible time for received time points,
- the temporal constraints are not violated.
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obey the temporal constraints.



  

STPUs: Strong controllability

An STPU is strongly controllable iff:
- the agent can commit to a time for all activated time-points,
- such that for any possible time for received time points,
- the temporal constraints are not violated.

The STPU is not strongly controllable, but it is obviously executable.
We need dynamic controllability.
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- at any point in time, the execution so far is ensured to extend to a complete 
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In this case, the agent does not have to commit to a time for any activated 
time points in advance.
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STPUs: Dynamic controllability

Not all problems will have solutions which have any kind of controllability. This 
does not mean they are impossible.

To reason about these kinds of issues we need to use a plan representation 
sufficient to capture the controllable and uncontrollable durations, causal 
orderings, and temporal constraints.



  

Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation 
sufficient to capture the controllable and uncontrollable durations, causal 
orderings, and temporal constraints.

The representation of a plan is coupled with the
choice of dispatcher.

The problem generation and planner are not
necessarily bound by the choice of 
representation.



  

Plan Execution 3: Conditional Dispatch

Uncertainty and lack of knowledge is a huge part of AI Planning for Robotics.

- Actions might fail or succeed.
- The effects of an action can be non-deterministic.
- The environment is dynamic and changing.
- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.



  

Uncertainty in AI Planning

- The environment is dynamic and changing.
- The environment is often initially full of unknowns.
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Some uncertainty 
can be handled at 
planning time:

- Fully-Observable 
Non-deterministic 
planning.

- Partially-observable 
Markov decision 
Process.

- Conditional 
Planning with 
Contingent Planners. 
(e.g. ROSPlan with 
Contingent-FF)
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Uncertainty in AI Planning

Human Robot Interaction is filled with uncertainties.



  

Plan Execution 4: Temporal and Conditional 
Dispatch together

Robotics domains require a combination of temporal and conditional 
reasoning. Combining these two kinds of uncertainty can result in very 
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [Claßen et al., 2012]

- Petri-Net Plans. [Ziparo et al. 2011]
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Plan Execution 4: Temporal and Conditional 
Dispatch together

Robotics domains require a combination of temporal and conditional 
reasoning. Combining these two kinds of uncertainty can result in very 
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [Claßen et al., 2012]

- Petri-Net Plans. [Ziparo et al. 2011]

ROSPlan is integrated with the PNPRos library for the representation and 
execution of Petri-Net plans. [Sanelli et al. 2017]
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Plan Execution 
depends upon many 
components in the 
system. Changing 
any one of which will 
change the robot 
behaviour, and 
change the criteria 
under which the plan 
will succeed or fail.
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Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour 
might move toward achievement of multiple goals together.

The robot can also have:
- long-term goals (plans are abstract, with horizons of weeks)
- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning 
process, and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.



  

Dispatching more than a Single Plan

How do you plan from future situations that you can't predict?

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search 
scenario. For tracking targets, tidying household objects, or interacting 
with people.
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For each task we generate a tactical plan.
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Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints 
are used in the generation of the strategic problem.

A strategic plan is generated that does not violate the time and resource 
constraints of the whole mission.



  

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical 
problem is regenerated, replanned, and executed.



  

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical 
problem is regenerated, replanned, and executed.

The tactical mission is 
executed by a complete 
planning system.

[Cashmore et al. 2015]



  

Dispatching more Plans: Opportunistic Planning

There might also be unknowns that we don't expect to discover.

For example, new opportunities are found during execution, and the robot 
should exploit them.



  

Dispatching more Plans: Opportunistic Planning

v

2011 Banff 5 of 10 lines parted.
2011 Volve 2 of 9 lines parted
2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted a 

distance, riser broken
2010 Jubarte 3 lines parted between 2008 and 2010.
2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a 

distance, riser broken
2009 Hai Yang Shi You Entire yoke mooring column 

collapsed; vessel adrift, riser broken.
2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a 

distance, riser broken.
2002 Girassol buoy 3 (+2) of 9 lines parted, no damage to 

offloading lines (2 later)

High Impact Low-Probability Events 
(HILPs)

- the probability distribution is unknown
- cannot be anticipated
- our example is chain following

If you see an unexpected chain, it's a good idea to 
investigate...



  

Dispatching more Plans: Opportunistic Planning

In PANDORA we planned and executed 
missions over long-term horizons (days or 
weeks)

Our planning strategy was based on the 
assumption that actions have durations 
normally distributed around the mean.

To build a robust plan we therefore used 
estimated durations for the actions that 
were 95th percentile of the normal 
distribution.

The resulting overestimation of actions builds a free time window
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Dispatching more Plans: Opportunistic Planning

New plans are generated for the opportunistic 
goals and the goal of returning to the tail of the 
current plan.

If the new plan fits inside the free time window, 
then it is immediately executed.



  

Dispatching more Plans: Opportunistic Planning

New plans are generated for the opportunistic 
goals and the goal of returning to the tail of the 
current plan.

If the new plan fits inside the free time window, 
then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution of 
a plan fragment, then the currently executing plan 
can be pushed onto the stack and a new plan can 
be executed.

[Cashmore et al. 2015]
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Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.



  

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the 
advancement towards multiple goals. [Mudrova et al. 2016]



  

Questions?

What is the glue in a Plan Execution framework that is always 
required?

How do we modify a domain model during execution?

Which parts of a domain model are transferable to other tasks?

Which parts of a domain model can be generated automatically

- From a description of the robot?

- From a source ontology?

How can we get rid of the planning expert?

- Can a description of a task be written by a non-expert, and a 
generic domain extended?


