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Why Human-Robot Interaction 

is important…

Coming here 

this morning….

2 people for driving a car

AI is CREATING jobs!



Disclaimer 1

Planning and Robotics is a growing area!
ICAPS workshops PlanRob

ICAPS Special Track on Planning and Robotics

PlanRob workshop + tutorial at ICRA 2017

Dagstuhl workshop on Planning and Robotics

This tutorial covers only 

some aspects

PlanRob workshop tomorrow (full day)



Disclaimer 2

One can use several formalisms to model 

robotics domains.

And one can use several techniques for 

planning in these domains.

Having said that, this tutorial will focus on

Domain-Independent Planning through PDDLx



Disclaimer 3

Planning is actually plural

planning includes many things

in this tutorial: “planning”=“task planning”

Thanks to 
Malik Ghallab!



Disclaimer 4

This is a tutorial

and we agreed to make it an accessible one

Slides  + Virtual Machine + Demo

available in the ROSPlan website



Outline

• Why PDDL Planning for Robotics and HRI?

• ROSPlan I: Planning with ROS

Coffee  (10.30-11.00)

• ROSPlan II: Planning with Opportunities

• Petri Net Plan Execution

• Open challenges



Outline

• Why PDDL Planning for Robotics and HRI?



Where PDDL planning is NOT useful 

for Robotics?

• Single/Repetitive Tasks (no PDDL for manipulation/grasping!)

• Safe Navigation  (Sampling is much better!)

• PDDL planning is really useful when there is room for optimisation 

at a task level



Outline

• Why PDDL Planning for Robotics and HRI?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty



Expressive Planning
• PDDL family of planning modelling languages

• PDDL1

• Introduced for the International Planning Competition series 
(1998).

• Used as the international standard modelling language family for 
planners

• Enables benchmarking and comparison across different 
algorithms and domains

• PDDL2.1

• Introduced time and numeric effects

• Powerful enough to model a class of Mixed discrete-continuous 
domains

• PDDL3

• Preferences and trajectory constraints (eg: always P, sometimes 
P, eventually P, etc)

• PDDL+

• Allows a larger class of mixed discrete continuous domains, 
including exogenous events

Instantaneous actions, propositional conditions and effects
LAMA, HSP, FF,  MetricFF,  SATplan, FastDownward, (+many 

others)

Temporal heuristic estimates, linear 
constraints 

LPG, TFD, SAPA, POPF, COLIN

Linear temporal logic 
OPTIC (POPF),  Hplan-P

Non-linear constraints, 
exogenous events

MIP,  UPMurphi,  PMTplan



Planning and Control

Frequency
(Hz)

105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6

Sensing

Control
Planning

Execution 
Monitoring

Noise Inaccuracy Uncertainty Ignorance

Planning is an AI technology that seeks to select and organise 

activities in order to achieve specific goals

Plan Dispatch: a controller  is responsible for realising each plan action



Planning with Time: An Additional Dimension

• Processes mean time spent in states matters



Planning in Hybrid Domains

• When actions or events are performed they cause instantaneous 

changes in the world

– These are discrete changes to the world state

– When an action or an event has happened it is over

• Processes are continuous changes

– Once they start they generate continuous updates in the world 

state

– A process will run over time, changing the world at every instant

Holding ball

Action: drop ball

Not holding ball

Ball falling

Height over time



PDDL+: Let it go

• First drop it...

• Then watch it fall...

• And then?

(:action release

:parameters (?b – ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))

:effect (and (not (holding ?b))))

(:process fall

:parameters (?b – ball)

:precondition (and (not (holding ?b)) (>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))

(decrease (height ?b) (* #t (velocity ?b)))))



PDDL+: See it bounce

• Bouncing...

• Now let’s plan to catch it...

(:event bounce

:parameters (?b - ball)

:precondition (and  (>= (velocity ?b) 0) 

(<= (height ?b) 0))

:effect (and (assign (height ?b) (* -1 (height ?b)))

(assign (velocity ?b) (* -1 (velocity ?b)))))

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))

:effect (and (holding ?b) (assign (velocity ?b) 0)))



A Valid Plan

• Let it bounce, then catch it...

• The validator                      can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

0.1: (release b1)

4.757: (catch b1)







Some PDDL+ Planners
• UPMurphi (Della Penna et al.)    [ICAPS’09]

Based on Discretise and Validate 

(Baseline for adding new heuristics: 
multiple battery management [JAIR’12] or urban traffic control [AAAI’16])

• DiNo (Piotrowski et al.)  [IJCAI’16]

Extend UPMurphi with TRPG heuristic for hybrid domains

• SMTPlan (Cashmore et al.) [ICAPS’16]

Based on SMT encoding of PDDL+ domains

• ENHSP (Scala et al.) [IJCAI’16]

Expressive numeric heuristic planning

• dReach/dReal (Bryce et al.) [ICAPS-15]

Combine SMT encoding with dReal solver

• POPF (Coles et al.) [ICAPS-10]

Combine Forward Search and Linear Programming



One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs

to reach a location where stable 

fixed-wind flight can be achieved.

The aircraft has fans/rotors which generate

lift and which can be tilted by 90 degrees

to achieve the right velocity both vertically

and horizontally. V-22 Osprey



Vertical Take-Off

(:action start_engines

:parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0) )

:effect (ascending))

(:process ascent

:parameters ()

:precondition (and (not (crashed)) (ascending) )

:effect (and (increase (altitude) (* #t (- (* (v_fan) (- 1 (/ (* (* (angle) 0.0174533)  

(* (angle) 0.0174533) ) 2) ) ) (g)) ) )

(increase (distance) (* #t (* (v_fan) (/ (* (* 4 (angle)) (- 180 (angle))) 

(- 40500 (* (angle) (- 180 (angle)))) ) ) ))))

(:durative-action increase_angle

:parameters ()

:duration (<= ?duration (- 90 (angle)) )

:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)) )

:effect (and (increase (angle) (* #t 1)) ))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))

:effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending) )

:effect (and (increase (altitude) (* #t (wind_y) 1)  

(increase (distance) (* #t (wind_x) 1)))

Timed Initial Fluents

(at 5.0 (= (wind_x) 1.3))

(at 5.0 (= (wind_y) 0.2))

(at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

.. …
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Opportunistic Planning

• Very important in persistent autonomy

• Use case: PANDORA (EU funded project)



Persistent Autonomy (AUVs)

Inspection and maintenance of a 

seabed facility:

- without human intervention

- inspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks



Persistent Autonomy (AUVs)

Inspection and maintenance of a 

seabed facility:

- without human intervention

- inspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

AUV mission, many tasks at scattered locations.

- long horizon plans

- large amount of uncertainty

- discovery

High utility, low-probability opportunities for new tasks.



Persistent Autonomy (AUVs)
High Impact Low-Probability Events (HILPs)

- the probability distribution is unknown

- cannot be anticipated

- our example is chain following

If you see an unexpected chain, it's a good idea to 

investigate...

2011 Banff 5 of 10 lines parted.
2011 Volve 2 of 9 lines parted
2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted

a distance, riser broken
2010 Jubarte 3 lines parted between 2008 and

2010.
2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a

distance, riser broken
2009 Hai Yang Shi You Entire yoke mooring column

collapsed; vessel adrift, riser broken.
2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a

distance, riser broken.
2002 Girassol buoy 3 (+2) of 9 lines parted, no damage

to offloading lines (2 later)



Opportunistic Planning

In PANDORA we plan and execute 

missions over long-term horizons (days or 
weeks)

Our planning strategy is based on the 

assumption that actions have durations 
normally distributed around the mean.

To build a robust plan we therefore use 

estimated durations for the actions that are 
longer than the mean. 

(95th percentile of the normal distribution)
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Opportunistic Planning

We use an execution stack ( of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.



Opportunistic Planning

We use an execution stack ( of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.



Why not just replan?
We compare the opportunistic approach against replanning the mission 

when an opportunity is discovered. When an opportunity is discovered 

a new initial state is generated.

Replanning:

- the problem is more difficult to solve

- the planning time can be increased

+ the opportunity can be ordered later in the plan

+ the existing plan can be reordered to make more time for exploiting 

the opportunity

+ the resulting plan can be more efficient

We examine situations where we have just discovered an opportunity:

10 second bound on planning for the opportunity alone

30 minute bound for replanning



Why not just replan?



Why not just replan?

Better plan quality by replanning



Why not just replan?

Better plan quality by replanning

We examine situations where we have just discovered an opportunity:

10 second bound on planning for the opportunity alone

30 minute bound for replanning

In 228 total missions:

5 replanning plans were more efficient than the opportunistic 

approach.



Opportunistic Planning

We use an execution stack ( of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.

NOTE: Opportunities can also arise for 

supervisor requests!

More details on Friday morning 

(Paper on Opportunistic Planning at the Journal Track)
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Strategic Planning for Persistent Autonomy

Planning over long horizons (days, weeks)

Missions with strict deadlines and time windows in which goals need to be 

accomplished.

Example  in underwater robotics:

Seabed facilities need to be inspected at certain intervals.

Current planning systems struggle in generating

complex plans over long horizons.

One possible solution:

Decompose into Strategic/Tactical Layers



Strategic/Tactical Planning

Cluster the goals into tasks

Strategic Layer: contains a high lever plan that achieves all tasks and

manages the resource and time constraints.

Tactical Layer: contains a plan that solves a single task.

Example from underwater robotics.

Long term maintenance of seabed facility includes

-Inspecting the structures are regular intervals.

-Changing the configuration of the site by interacting with interfaces within 

specific time windows.

-Recharging the AUVs.

Additional challenges: 

-Ever changing environment (currents, visibility)

-Wildlife



Strategic/Tactical Planning



Strategic/Tactical Planning
Clustering



Strategic/Tactical Planning
Clustering



Strategic/Tactical Planning
Tactical Layer

For each Task the planner generates a plan 

and stores:

-duration

-resource constraints

Energy consumption = 10W

Duration = 86.43s



Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the 

time and resource constraints.



Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the 

time and resource constraints.

All the tactical plans are collected.

And the strategic plan is generated, not violating resource/time constraints



Strategic/Tactical Planning
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Planners can be trusted

Planners can allow an easy interaction with humans

Planners are transparent

(at least, the process by which the decisions are made are 

understood by their programmers)

To note: entirely trustworthy and theoretically well-understood 

algorithms can still yield decisions that are hard to explain.

Ex: Linear Programming ….

To note: XAI and the need to explain machine/deep learning 

remain of critical importance!

XAIP is important in domains where learning is not an option.

eXplainable Planning (XAIP)



XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process 

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !
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XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process 

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

A request for an explanation is an attempt  to uncover a piece of 

knowledge that the questioner believes must be available to the 

system and that the questioner does not have.



Towards XAIP

• Plan explanation 

– Translate PDDL in forms that humans can understand [Sohrabi et al. 2012]

– Design interfaces that help this understanding [Bidot et al. 2012]

– Describe causal/temporal relations for plan steps [Seegebarth et al. 2012]

– Explaining observed behaviours [Sohrabi, Baier, McIlraith, 2011]

– Understanding the past [Molineaux et al., 2012 ]

– … ... …  

• Plan Explicability

– Focus on human’s interpretation of plans [Seegebarth et al. 2012]

• Verbalization and transparency in autonomy

– Generate narrations for autonomous robot navigations [Veloso et al. 2016]

• Explainable Agency [Langley et al. 2017]

• Model Reconciliation (Sreedharan et al.)

– Identify/reconcile different human/robot models [Chakraborti et al 2017]



Transparency in Autonomy
(Manuela Veloso et al.)

Verbalization: the process by which an autonomous robots converts its 

own experience into language

Verbalization space: to capture  different nature of explanations.

And to learn to correctly infer an explanation level in the verbalization 

space.

Specificity – Locality - Abstraction

Verbalization: Narration of Autonomous Mobile Robot Experience.
Rosenthal, Selvaraj, Veloso. IJCAI 2016.



Things to Be Explained

(some)

• Q1: Why did you do that?

• Q2: Why didn’t you do something else? (that I would have done)

• Q3: Why is what you propose to do more efficient/safe/cheap than 

something else? (that I would have done)

• Q4: Why can’t you do that ? 

• Q5: Why do I need to replan at this point?

• Q6: Why do I not need to replan at this point?



Illustrative Example

Rover Time domain from IPC-4 (problem 3)

Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

NA: so that I can communicate_data from Rover0 later (at 18.001) 
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why didn’t Rover1 take the rock sample at waypoint0 ?



Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan
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Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

We require the plan to contain at least one action that has Rover0 as 

argument (add dummy effect to all actions using Rover0 and put into the goal)



Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

We require the plan to contain at least one action that has Rover0 as 

argument (add dummy effect to all actions using Rover0 and put into the goal)

A: There is no useful way to use Rover0 for improve this plan



eXplainable Planning

• Q5: Why do I need to replan at this point?

In many real-world scenarios, it is not obvious that the plan being executed 

will fail. Often plain failures is discovered too late.

One possible approach is to use the “Filter Violation” (ROSPlan)

Once the plan is generated, ROSPlan creates a filter, by considering all the 

preconditions of the actions in the plan.

Ex: navigate (?from ?to - waypoint) has precondition (connected ?from ?to)

If the plan contains navigate (wp3 wp5), 

then (connected wp3 wp5 ) is added to the filter.

at execution time



Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)
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Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)
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Planning with Uncertainty

Uncertainty and lack of knowledge is a huge part of AI Planning for Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.





Uncertainty in AI Planning

Some uncertainty can be 
handled at planning 
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable 
Markov decision 
Process.

- Conditional Planning 
with Contingent 
Planners. (e.g. ROSPlan
with Contingent-FF)
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Uncertainty in AI Planning



ROSPlan: Planning in the Robot Operating 
System


