Al Planning for Robotics and
Human-Robot Interaction

Michael Luca Daniele
Cashmore locchi
Magazzeni
King’s College Sapienza King’s College
London University of Rome London
ICAPS 2017

19 June 2017
Pittsburgh —USA

Why Human-Robot Interaction
IS important...

Coming here
this morning....

2 people for driving a car

Alis CREATING jobs!

Disclaimer 1

Planning and Robotics is a growing area!

ICAPS workshops PlanRob

ICAPS Special Track on Planning and Robotics
PlanRob workshop + tutorial at ICRA 2017
Dagstuhl workshop on Planning and Robotics

This tutorial covers only
some aspects

PlanRob workshop tomorrow (full day)

Disclaimer 2

One can use several formalisms to model
robotics domains.
And one can use several techniques for
planning in these domains.

Having said that, this tutorial will focus on
Domain-Independent Planning through PDDLXx

Disclaimer 3

: : Thanks to
Planning is actually plural pmaiik ghaliab!

planning includes many things
in this tutorial: “planning”=*task planning”

Steven M. LaValle

PLANNING
ALGORITHMS

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

Disclaimer 4

This Is a tutorial
and we agreed to make it an accessible one

Slides + Virtual Machine + Demo
avallable in the ROSPlan website

Outline

« Why PDDL Planning for Robotics and HRI?
« ROSPIlan I: Planning with ROS

Coffee (10.30-11.00)

« ROSPIlan II: Planning with Opportunities

» Petri Net Plan Execution

 Open challenges

Outline

« Why PDDL Planning for Robotics and HRI?

Where PDDL planning is NOT useful
for Robotics?

Single/Repetitive Tasks (no PDDL for manipulation/grasping!)

Safe Navigation (Sampling is much better!)

PDDL planning is really useful when there is room for optimisation

at a task level

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Expressive Planning

DDL family of planning modelling languages

* DI nstantaneous actions, propositional conditions and effects
* \I] LAMA, HSP, FF, MetricFF, SATplan, FastDownward, (+many eries
- others)
« Uséq as the international Standard modelling language Tamily for

planners

« Enablex benchmarking and comparison across diterent

algorlth c_and AdAarmAaince
PDDL2.1 Temporal heuristic estimates, linear

. Introduce constraints
LPG, TFD, SAPA, POPF, COLIN

« Powerful ¢ te-continuous
domains \ /
- PDDL3 Linear temporal logic
- Preferences anq OPTIC (POPF), Hplan-P |- always P, sometimes
P, eventually P, &y
« PDDL+ \ /
 Allows alargerd Non-linear constraints, jtinuous domains,
including exoger exogenous events
MIP, UPMurphi, PMTplan

Planning and Control

Planning is an Al technology that seeks to select and organise
activities in order to achieve specific goals

Plan Dispatch: a controller is responsible for realising each plan action

Execution
Monitoring

Frequency

(Hz) 10> 10* 10® 102 10' 10° 10! 102 103 10* 10° 10°

Noise Inaccuracy Uncertainty lgnorance

Planning with Time: An Additional Dimension

« Processes mean time spent in states matters

. NN |

\A

Planning in Hybrid Domains

* When actions or events are performed they cause instantaneous
changes in the world

— These are discrete changes to the world state

— When an action or an event has happened it is over
|

Holding ball Not holding bai!

Action: drop ball Height over time

* Processes are continuous chane >

— Once they start they generate continuous updates in the world
state

— A process will run over time, changing the world at every instant

PDDL+: Let it go

* Firstdropit...

(:action release

:parameters (?b - ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))
:effect (and ((not (holding ?b))))]

e Then watch it fall...

(:process fall

:parameters (?b - ball) V¥

:precondition (and (not (holding ?b)) |(>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))
(decrease (height ?b) (* #t (velocity ?b)))))

e Andthen?

PDDL+: See i1t bounce

* Bouncing...

(:event bounce
:parameters (?b - ball)
:precondition (and (>= (velocity ?b) 0)
(<= (height ?b) 0))
:effect (and (assign (height ?b) (* -1 (height ?b)))
(assign (velocity ?b) (* -1 (velocity ?b)))))

* Now let’s plan to catch it...

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))
:effect (and (holding ?b) (assign (velocity ?b) 0)))

A Valid Plan

Let it bounce, then catch it...

0.1:

(release bl)

4.757: (catch bl)

The validator ML

can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

1.51421:

1.51421:

4.34264:

4.34264:

4.34264:

4.75T:

4.757:

4.757:

Event triggered!

Triggered event (bounce bl)

[mactivated process (fall bl)

Updating (height b1) (-2.22045e-13) by 2.22045e-15 assignment.
Updating {velocity b1) (14.1421) by -14.142] assignment.

Event triggered!
Activated process (fall bl)

Checking Happening... ... DR

(height b1)(t) = —5t% + 14.1421¢ + 2.22045 — 15

{(velocity b1)(t) = 10¢ — 14,1421

Updating {height b1) (2.22045e-15) by -2.44943e-15 for contin-
uous update.

Updating (velocity b1) (-14.1421) by 14.1421 for continuous up-

date.

Event triggered!

Triggered event (bounce bl)

Unactivated process (fall bl)

Updating (height bl) (-2.44943e-13) by 2.44943e-15 assignment.
Updating {velocity b1) (14.1421) by -14.1421 assignment.

Event triggered!
Activated process (fall bl)

Checking Happening... ... OR!
(height b1)(t) = —5t% + 14.1421¢ + 2.44943e — 15

Updating (height bl) (2.44943e-15) by 5.00146 for continuous

update.
Updating (velocity b1} (-14.1421) by -9.99854 for continuous

update.

Checking Happening... ... Ok
Adding (holding b1)
Updating {velocity bl) (-9.99854) by 0 assignment.

Event triggered!
Unactivated process (fall b1}

Plan executed successfully - checking goal

10

Value

. Time

20149
0

Figure 2.1:

[elard

4000

Graph of (height bl).

WValue
14141
0L ol 1me
1] ' ! H.THT
141401 /

Figure 2.2: Graph of (velocity bl).

Some PDDL+ Planners

UPMurphi (Della Penna et al.) [ICAPS’09]
Based on Discretise and Validate

(Baseline for adding new heuristics:
multiple battery management [JAIR’12] or urban traffic control [AAAI'16])

DiNo (Piotrowski et al.) [IJCAI'16]
Extend UPMurphi with TRPG heuristic for hybrid domains

SMTPIlan (Cashmore et al.) [ICAPS’16]
Based on SMT encoding of PDDL+ domains

ENHSP (Scala et al.) [1JCAI'16]
Expressive numeric heuristic planning

dReach/dReal (Bryce et al.) [ICAPS-15]
Combine SMT encoding with dReal solver

POPF (Coles et al.) [ICAPS-10]

Combine Forward Search and Linear Programming

One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs
to reach a location where stable
fixed-wind flight can be achieved.

The aircraft has fans/rotors which generatej 3

lift and which can be tilted by 90 degrees §
to achieve the right velocity both vertically
and horizontally. V-22 Osprey

Vertical Take-Off

(:action start_engines
parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0))

.effect (ascending))

(:process ascent
:parameters ()

:precondition (and (not (crashed)) (ascending))
.effect (and (increase (altitude) (* # (- (* (v Timed Initial Fluents

(* (angle) 0.0174533)) 2))) (9) (at 5.0 (= (wind_x) 1.3))
(increase (distance) (* #t (* (v_f| (at 5.0 (= (wind_y) 0.2))
(- 40500 (* (angle) (- 180 (anglg (at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

(:durative-action increase_angle
‘parameters ()

:duration (<= ?duration (- 90 (angle)))
:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)))
-effect (and (increase (angle) (* #t 1))))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))
.effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending))

.effect (and (increase (altitude) (* #t (wind_y) 1)
(increase (distance) (* #t (wind_x) 1)))

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Opportunistic Planning

Very important in persistent autonomy
Use case: PANDORA (EU funded project)

Persistent Autonomy (AUVS)

Inspection and maintenance of a
seabed facility:

- without human intervention
- iInspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

Persistent Autonomy (AUVS)

Inspection and maintenance of a
seabed facility:

- without human intervention
- iInspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

AUV mission, many tasks at scattered locations.

- long horizon plans
- large amount of uncertainty
- discovery

High utility, low-probability opportunities for new tasks.

Persistent Autonomy (AUVS)

High Impact Low-Probability Events (HILPS)

- the probability distribution is unknown
- cannot be anticipated
- our example is chain following

If you see an unexpected chain, it's a good idea to
investigate...

2011 Banff 5 of 10 lines parted.

2011 Volve 2 of 9 lines parted

2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted
a distance, riser broken

2010 Jubarte 3 lines parted between 2008 and
2010.

2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a
distance, riser broken

2009 Hai Yang Shi You Entire yoke mooring column
collapsed; vessel adrift, riser broken.

2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a
distance, riser broken.

2002 Girassol buoy 3 (+2) of 9 lines parted, no damage

to offloading lines (2 later)

Opportunistic Planning

In PANDORA we plan and execute
missions over long-term horizons (days or
weeks)

Our planning strategy is based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use
estimated durations for the actions that are
longer than the mean.

(95" percentile of the normal distribution)

Opportunistic Planning

In PANDORA we plan and execute
missions over long-term horizons (days or
weeks)

Our planning strategy is based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use
estimated durations for the actions that are
longer than the mean.

(95" percentile of the normal distribution)

Opportunistic Planning

In PANDORA we plan and execute
missions over long-term horizons (days or
weeks)

Our planning strategy is based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use
estimated durations for the actions that are
longer than the mean.

(95" percentile of the normal distribution)

Opportunistic Planning

Main Plan
We use an execution stack (of goals & plans)

The current plan tail can be pushed onto the stacké Opportunity
New plans are generated for the opportunistic

goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

Opportunistic Planning

Main Plan
We use an execution stack (of goals & plans)

Opportunity

The current plan tail can be pushed onto the stack :
: Plan

New plans are generated for the opportunistic Aﬂg[ﬁtitggal
goals and the goal of returning to the tail of the

opportunity
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

Why not just replan?

We compare the opportunistic approach against replanning the mission
when an opportunity is discovered. When an opportunity is discovered
a new Initial state is generated.

Replanning:

- the problem is more difficult to solve
- the planning time can be increased

+ the opportunity can be ordered later in the plan

+ the existing plan can be reordered to make more time for exploiting
the opportunity

+ the resulting plan can be more efficient

We examine situations where we have just discovered an opportunity:
10 second bound on planning for the opportunity alone
30 minute bound for replanning

Why not just replan?

Mission Opp plan | Full replan Plan duration
Main Opp time time | Opp Mission | Complete Opp Plan | Replanned plan
V2_400 I_16 0.36 38.18 851.384 1265.032 2437.496
V2500 I-16 5.54 7.46 1541.168 2076.155 2596.156
V2.600 I_16 5.34 7.28 1541.168 2117.136 2269.701
V2700 I_16 5.32 9.56 1541.168 2117.136 2283.134
V2_800 I_16 5.38 6.24 1541.168 2117.136 2048.833
V2.900 I_16 54 9.16 1541.168 2117.136 1900.069
V2_1000 | 1I-16 0.38 21.42 851.384 1265.032 2615.245
V2_1100 | 1-16 0.34 7.28 888.554 1302.202 2048.833
V2_1200 | 116 24 11.9 1440.568 1854.216 2511.960
V2_1300 | I_16 0.36 6.34 851.384 1265.032 2772.985
V2_1400 | 1.16 0.42 6.28 851.384 1265.032 2772.985
V2_1500 | 1-16 0.34 7.82 851.384 1265.032 2946.391
V21600 | I-16 0.38 14.54 851.384 1265.032 2175.901
V2_1700 | 1-16 0.4 15.6 851.384 1265.032 2897.665
V2_1800 | I_16 0.42 6.24 851.384 1265.032 2772.985
V2_1900 | I.16 0.38 6.44 851.384 1265.032 2772.985
V22000 | 1_16 0.36 2.62 851.384 1265.032 2490.490
V2.400 .32 5.08 148.17 2233.961 2564.254 3531.784
V2500 1.32 2.2 165.62 1768.98 2129.213 5332.514
V2_600 1.32 3.7 78.19 1777.177 2137.41 3623.974
V2_700 .32 4.08 272.84 1815.849 2176.082 4877.45
V2_1000 | 1.32 4.66 104.04 2686.638 3093.992 4263.605
V222000 | 132 4.32 100.16 2457.922 2865.276 3778.601

Why not just replan?

Mission Opp plan | Full replan Plan duration

Main Opp time time | Opp Mission | Complete Opp Plan | Replanned plan
V2_400 I_16 0.36 38.18 851.384 1265.032 2437.496
V2500 I-16 5.54 7.46 1541.168 2076.155 2596.156
V2.600 I_16 5.34 7.28 1541.168 2117.136 2269.701
() f () -. /] 4 - 2 /]

6.24 1541.168 2117.136 2048.833

9.16 1541.168 2117.136 1900.069

V2_1100
V2_1200
V2_1300
V2_1400
V2_1500
V2_1600
V2_1700
V2_1800
V2_1900
V2_2000
V2400

V2.500

V2_600

V2_700

V2_1000
V22000

Lo
NN Oy

I
(4) = e et e e e et e
[\ e e Be T e T e))

e

[
b d
(RS

.32
1.32
[.32

2.4
0.36
0.42
0.34
0.38

0.4
0.42
0.38
0.36
5.08

2.2

3.7
4.08
4.66
4.32

11.9
6.34
6.28
7.82
14.54
15.6
6.24
6.44
2.62
148.17
165.62
78.19
272.84
104.04
100.16

1440.568
851.384
851.384
851.384
851.384
851.384
851.384
851.384
851.384

2233.961
1768.98

1777.177

1815.849

2686.638

2457.922

1854.216
1265.032
1265.032
1265.032
1265.032
1265.032
1265.032
1265.032
1265.032
2564.254
2129.213

2137.41
2176.082
3093.992
2865.276

2048.833
2511.960
2772.985
2772.985
2946.391
2175.901
2897.665
2772.985
2772.985
2490.490
3531.784
5332514
3623.974

4877.45
4263.605
3778.601

Why not just replan?

Mission Opp plan | Full replan Plan duration

Main Opp time time | Opp Mission | Complete Opp Plan | Replanned plan
V2_400 116 0.36 38.18 851.384 1265.032 2437.496
V2500 116 5.54 7.46 1541.168 2076.155 2596.156
V2600 I_16 5.34 7.28 1541.168 2117.136 2269.701
() f () - /] 4 - 2 /]

6.24 1541.168 2117.136 2048.833

9.16 1541.168 2117.136 1900.069

—1U 8 O 15.27

V2_1100 | I-1 0.34 2048.833
V2_1200 | 116 2.4 11.9 1440.568 1854.216 2511.960
V2_1300 | I-16 0.36 6.34 851.384 1265.032 2772985
V2_1400 | 116 0.42 6.28 851.384 1265.032 2772.985
V2_1500 | I-16 0.34 7.82 851.384 1265.032 2946.391
V2.1600 | I-16 0.38 14.54 851.384 1265.032 2175901

In 228 total missions:
5 replanning plans were more efficient than the opportunistic
approach.

L - p— L W LW | L I e | f LW N I P W LS S | | AAAAAAAA | et nl i LT

We examine situations where we have just discovered an opportunity:
10 second bound on planning for the opportunity alone
30 minute bound for replanning

Opportunistic Planning

Main Plan
We use an execution stack (of goals & plans) R

The current plan tail can be pushed onto the stacki Opportunity

Plan

Additional
nested
opportunity

New plans are generated for the opportunistic
goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

NOTE: Opportunities can also arise for
supervisor requests!

More details on Friday morning

(Paper on Opportunistic Planning at the Journal Track)

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Strategic Planning for Persistent Autonomy

Planning over long horizons (days, weeks)

Missions with strict deadlines and time windows in which goals need to be
accomplished.

Example in underwater robotics:
Seabed facilities need to be inspected at certain intervals.

— o~ B e
S - R -N (;-?:&:. AR ~

= - - = = -
B = S

»-s‘-‘ = ss-— =

Current planning systems struggle in generating
complex plans over long horizons.

One possible solution:
Decompose into Strategic/Tactical Layers

Strategic/Tactical Planning

Cluster the goals into tasks

Strategic Layer: contains a high lever plan that achieves all tasks and
manages the resource and time constraints.

Tactical Layer: contains a plan that solves a single task.
Example from underwater robotics.
Long term maintenance of seabed facility includes

-Inspecting the structures are regular intervals.

-Changing the configuration of the site by interacting with interfaces within
specific time windows.

-Recharging the AUVSs.

Additional challenges:
-Ever changing environment (currents, visibility)
-Wildlife

Strategic/Tactical Planning

AUV Manifold Elapsed time

Planner
time line

Valve
panels

Strategic/Tactical Planning
Clustering

AL ; PR

| o o oo e | |

Strategic/Tactical Planning
Clustering

| 5y 5 e s e]

Strategic/Tactical Planning

Tactical Layer

For each Task the planner generates a plan
and stores:

-duration

-resource constraints

8.000: (correct_position auvl® wp_auve) [3.000]

3.001: (do_hover_fast auv® wp_auv® strategic_location_7)
[11.483]

14.405: (correct_position auv@_strategic_location_78)
[3.000]

17.406: (observe_inspection_point auv@ strategic_location_7
inspection_polint_2) [10.080]

27.407: (correct_position auvd® strategic_location_7)
[3.0800]

45.083: (do_hover_controlled auv® strategic_location_5
strategic_location_5) [4.800]

49.084: (observe_inspecetion_polnt auv@
strategic_location_5 inspection_point_4) [10.860]

Energy consumption = 10W
Duration = 86.43s

Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the
time and resource constraints.

Inspectionl interval n -

30 45 75 80

Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the
time and resource constraints.

All the tactical plans are collected.

complete_mission complete_mission
Inspection 1 Inspection 2

And the strategic plan is generated, not violating resource/time constraints

Inspectionl interval n -
75 80

30 45

complete_mission complete_mission
Inspection 2 Inspection 1

Strategic/Tactical Planning

N Y U

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

exXplainable Planning (XAIP)

Planners can be trusted
Planners can allow an easy interaction with humans

Planners are transparent
(at least, the process by which the decisions are made are

understood by their programmers)

To note: entirely trustworthy and theoretically well-understood
algorithms can still yield decisions that are hard to explain.
Ex: Linear Programming

To note: XAl and the need to explain machine/deep learning
remain of critical importance!
XAIP is important in domains where learning is not an option.

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process
by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process
by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: BecauseT o the goal !

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process
by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because o the goal !

A request for an explanation is an attempt to uncover a piece of

knowledge that the questioner believes must be available to the
system and that the questioner does not have.

Towards XAIP

Plan explanation

— Translate PDDL in forms that humans can understand [Sohrabi et al. 2012]
— Design interfaces that help this understanding [Bidot et al. 2012]

— Describe causal/temporal relations for plan steps [Seegebarth et al. 2012]
— Explaining observed behaviours [Sohrabi, Baier, Mcllraith, 2011]

— Understanding the past [Molineaux et al., 2012]

Plan Explicability
— Focus on human’s interpretation of plans [Seegebarth et al. 2012]

Verbalization and transparency in autonomy
— Generate narrations for autonomous robot navigations [Veloso et al. 2016]

Explainable Agency [Langley et al. 2017]

Model Reconciliation (Sreedharan et al.)
— ldentify/reconcile different human/robot models [Chakraborti et al 2017]

Transparency in Autonomy
(Manuela Veloso et al.)

Verbalization: the process by which an autonomous robots converts its
own experience into language

Verbalization space: to capture different nature of explanations.

And to learn to correctly infer an explanation level in the verbalization
space.

Specificity — Locality - Abstraction

Specificity 4 -

-“Please tell me exactly how you got here”

»

: ~ "OK, now only tell me what happened near
aalhe room 7004

“Can you only give me a brief summary?”

~
i

AEstraction

Locality

Verbalization: Narration of Autonomous Mobile Robot Experience.
Rosenthal, Selvaraj, Veloso. IJCAI 2016.

Things to Be Explained
(some)

Q1: Why did you do that?
Q2: Why didn’t you do something else? (that | would have done)

Q3: Why is what you propose to do more efficient/safe/cheap than
something else? (that | would have done)

Q4: Why can’t you do that ?
Q5: Why do | need to replan at this point?

Q6: Why do | not need to replan at this point?

Rover

oo O

5

10.
13.
17.
18.
22.
27.
28.
43.

.000:
.000:
.001:

001:

002:
001:
002:
001:
003:
003:
002:
003:

lllustrative Example

Time domain from IPC-4 (problem 3)

(navigate rl wp3 wpl) [5.0]
(navigate r0 wpl wpQ) [5.0]
(calibrate rl cameral obj0 wpO) [5.0]
(sample_rock r0 rOstore wpQO) (85.0]
(take_image rl wp(O obj0 cameral col) [T.0]
(navigate r0 wpl wpl) [5.0]
(navigate rl wpl wp3) [5.0]
(comm_rock data r0 general wpl0 wpl wpl) [10.0]
(navigate rl wp3 wpZ) [5.0]
(sample_scoil rl rlstore wp2) [10.0]
(comm_image_data rl general cbij0 ccl wp2 wplO) [15.0]
(comm_soil_data rl general wpZ wpZz wpl) [10.0]

[Duration = 53.003]

Q1: why did you use Rover0 to take the rock sample at waypointO ?

NA: so that | can communicate data from RoverO later (at 18.001)

lllustrative Example

Rover Time domain from IPC-4 (problem 3)

0.000: (navigate rl wp3 wp0) [5.0]
0.000: (navigate r0 wpl wpQ) [5.0]

= akal=-hals = T = []) []]
5.001: (sample_rock r0 rOstore wpQO) (85.0]
0.002: (take_image rl wp(l obj0 cameral col) [T.0]

13.001: (navigate r0 wpl wpl) [5.0]

27.003: (sample_so0il rl rlstore wp) [10.0]
28.002: (comm_image_data rl general cbij0 ccl wpZ wplO) [15.0]
43.003: (comm_scil_data rl general wp2 wpZ wpl) [10.0]

[Duration = 53.003]
Q1: why did you use Rover0 to take the rock sample at waypointO ?

NA: so that | can communicate data from RoverO later (at 18.001)

lllustrative Example

Rover Time domain from IPC-4 (problem 3)

0.000: (navigate rl wp3 wp0) [5.0]

0.000: (navigate r0 wpl wpQ) [5.0]
= i - 1 {7 . []]

5.001: (sample_rock r0 rOstore wpQO) (85.0]

0.002: (take_image rl wp(l obj0 cameral col) [T.0]
13.001: (navigate r0 wpl wpl) [5.0]

27.003: (sample_so0il rl rlstore wp) [10.0]

28.002: (comm_image_data rl general cbij0 ccl wpZ wplO) [15.0]
43.003: (comm_scil_data rl general wp2 wpZ wpl) [10.0]

[Duration = 53.003]

Q1: why did you use Rover0 to take the rock sample at waypointO ?
why didn’t Rover1 take the rock sample at waypoint0 ?

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

0.000: (navigate rl wp3 wpO0) [5.0]
5.001: (calibrate rl cameral obj0 wpO) [5.0]
10.002: (take_image rl wp(O obj0 cameral col)

[0 B

5

10.
13.
17.
18.
22.
27.
28.
43.

.000:
.000:
.001:

001:

go2:
001:
Qo2:
001:
003:
003:
002:
003:

(navigd 10.003: (sample_rock rl rlstore wp0) [8.0]
(navigq 18.003: (navigate rl wp0 wp3) [5.0]
(calib 18.004: (drop rl rlstore) [1.0]

(sample 23.004: (navigate rl wp3 wp2) [5.0]

[7.0]

(take | 28.004: (comm_image_data rl general obj0 col wpZ wp0) [15.0]

28.005: (sample_scil rl rlstore wp2) [10.0]

navidg

Enavié 43.005: (comm_scil_data rl general wpZ wpZ wp0) [10.0]
(CDmﬂi 53.006: (comm_rock_data rl general wp0 wpZ wp0O) [10.0]
(naviq 'pration = 63.006]

(samp]

(comm_image_data rl general obij0 cecl wp2 wplO) [15.0]
(comm_scil_data rl general wpZ wpZ wpl) [10.0]

[Duration = 53.003]

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?
why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

Q2: But why does Roverl do everything in this plan?

0.000: (navigate rl wp3 wpO) [5.0]

5.001: (calibrate rl cameral obj0 wp0) [5.0]

.002: (take_image rl wpO obj0 cameral col) [7.0]
.003: (sample_rock rl rlstore wpO) [8.0]

18.
18.
23.
28.

10
10

28
43

[Duration = 63.006]

.005: (sample_scil rl rlstore wpZ) [10.0]
.005: (comm_socil_data rl general wp2 wpZ wp0) [10.0]
53.

003: (navigate rl wpO wp3) [5.0]

004: (drop rl rlstore) [1.0]

004: (navigate rl wp3 wpZ2) [5.0]

004: (comm_image_data rl general objl0 col wp2 wplO) [15.0]

006: (comm_rock_data rl general wpO wpZ wp0) [10.0]

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

Q2: But why does Roverl do everything in this plan?

We require the plan to contain at least one action that has RoverO as
argument (add dummy effect to all actions using Rover0O and put into the goal)

0.000:
5.001:

10
10
18
18
23
28
28
43
53

[Duration

.002:
.003:
.003:
.004:
.004:
.004:
.005:
.005:
.006:

(n3
(o3
(1
(g
(r
(cC
(r
(c
(s
(c
(¢

0.000:
0.000:
5.001:

10.002:
10.003:
18.003:
18.004:
23.004:
28.004:
28.005:
43.005:

53.006:

(navigate r0 wpl wpO) [5.0]

(navigate rl wp3 wp0) [5.0]

(calibrate rl cameral obj0 wpO) [5.0]
(take_image rl wpO obj0 cameral col) [7.0]
(sample_rock rl rlstore wp0) [8.0]
(navigate rl wpO wp3) [5.0]

(drop rl rlstore) [1.0]
(navigate rl wp3 wp2) [5.0]

(comm_1image_data rl general obj0 col wpZ wp0) [15.0]
(sample_scil rl rlstore wpZ2) [10.0]

(comm_soil_data rl general wpZ wpZ wpl) [10.0]
(comm_rock_data rl general wp(O wp2 wpl) [10.0]

L=

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

Q2: But why does Roverl do everything in this plan?

We require the plan to contain at least one action that has RoverO as
argument (add dummy effect to all actions using Rover0O and put into the goal)

A: There is no useful way to use RoverO for improve this plan

10.
10.
18.
18.
23.
28.
28.
43.
53.

0.000:
0.000:
5.001:
002:
003:
003:
004:
004:
004:
005:
005:
006:

(navigate r0 wpl wpO) [5.0]

(navigate rl wp3 wp0) [5.0]

(calibrate rl cameral obj0 wpO) [5.0]
(take_image rl wpO obj0 cameral col) [7.0]
(sample_rock rl rlstore wp0) [8.0]

(navigate rl wp0O wp3) [5.0]

(drop rl rlstore) [1.0]

(navigate rl wp3 wpZl) [5.0]

(comm_image_data rl general obj0 col wp2 wpO) [15.0]
(sample_soil rl rlstore wpZ) [10.0]

(comm_soil_data rl general wp2Z wpZ2 wpl) [10.0]
(comm_rock_data rl general wpO wp2 wp0) [10.0]

exXplainable Planning
at execution time

 Q5:Why do I need to replan at this point?

In many real-world scenarios, it is not obvious that the plan being executed
will fail. Often plain failures is discovered too late.

One possible approach is to use the “Filter Violation” (ROSPIlan)

Once the plan is generated, ROSPlan creates a filter, by considering all the
preconditions of the actions in the plan.

EX: navigate (?from ?to - waypoint) has precondition (connected ?from ?to)
If the plan contains navigate (wp3 wp5),
then (connected wp3 wp5) is added to the filter.

lllustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

0.000: (cbserve auv wpl ip3) [10.000]
10.001: (correct_position auv wpl) [10.000]
20.002: (do_hover auv wpl wpZ) [T1.696]

91.699: (cbserve auv wp2 ipd) [10.000]
101.700: (correct_pesition auv wp2) [10.000]

111.701: do_hover auv wpZ wpZ3) [16.710]
128.412: (cbserve auv wp23 iph) [10.000]
138.413: (correct_pecsiticon auv wp23) [10.000]
148.414: coserve auv wWwpZ3 ipl) [10.000]
158.415: (correct_position auv wpzZ3) [10.000]
168.416: (do_hover auv wp23 wp22) [16.710]
185.127: (do_hover auv wp2Z wp26) [30.201]
215.329: observe auv wpzZt ip7) [10.000]
225.330: (correct_position auv wp2b) [10.000]
235.331: (do_hover auv wp2t wp2l) [22.177]
258.509: coserve auv wpZl ip2) [10.000]
268.510: (correct_position auv wp2l) [10.000]

299.767: (observe auv wpz27 ip8) [10.000]
309.768: correct_position auv wpzZ7) [10.000]
319.769: (cbserve auv wp27 iph) [10.000]
329.770: (correct_pecsiticon auv wp27) [10.000]
339.771: do_hover auv wp27 wpl7) [23.597]

363.369: (do_hover auv wpl7 wp25) [21.413)
384.783: (do_hover auv wp2b wp32) [16.710]
401.494: (do_hover auv wp3Z2 wp36) [21.451]
422.946: (cbserve auv wp3é ip9) [10.000]
432.947: correct_position auv wp36) [10.000]
447 .,948: observe auv wp3bt iplh) [10.000]

(
(
(
(
(
(
(
(
(
(
(
(
278.511: (do_hover auv wpZl wp27T) [21.255]
(
(
(
(
(
(
(
(
(
(
(

lllustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

0.000: (cbserve auv wpl ip3) [10.000]
10.001: (correct_position auv wpl) [10.000]
20.002: (do_hover auv wpl wpZ) [T1.696]
91.699: (cbserve auv wp2 ipd) [10.000]
101.700: (correct_pesition auv wp2) [10.000]

111.701: do_hover auv wpZ wpZ3) [16.710]
128.412: (cbserve auv wp23 iph) [10.000]
138.413: (correct_pecsiticon auv wp23) [10.000]

158.415: (correct_position auv wpzZ3) [10.000]

{
(
(
148.414: (cbhserve auv wp23 ipl) [10.000]
(
168.416: | [16.710]

do_hover auv wp23 wp22)

215.3259: (observe auv wpzZbt ip7) [10.000]

do_hover auv wp2t wp2l) [22.177]
coserve auv wpZl ip2) [10.000]
correct_position auv wpzZl) [10.000]
do_hover auv wp2l wp2T) [21.255]
coserve auv wp27 ip8) [10.000]
309.768: correct_position auv wpzZ7) [10.000]
319.769: (cbserve auv wp27 iph) [10.000]

235.331: |
(
(
(
(
(
(

329.770: (correct_pecsiticon auv wp27) [10.000]
(
(
(
(
(
(
(

258.5009:
268.510:
278.511:
299.767:

339.771: do_hover auv wp27 wpl7) [23.597]

363.369: (do_hover auv wpl7 wp25) [21.413)
384.783: (do_hover auv wp2b wp32) [16.710]
401.494: (do_hover auv wp3Z2 wp36) [21.451]
422.946: (cbserve auv wp3é ip9) [10.000]
432.947: correct_position auv wp36) [10.000]
447 .,948: observe auv wp3bt iplh) [10.000]

lllustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

0.000: (cbserve auv wpl ip3) [10.000]

10.001: (correct_position auv wpl) [10.000]
20.002: (do_hover auv wpl wpZ) [T1.696]
91.699: (cbserve auv wp2 ipd) [10.000]
101.700: (correct_pesition auv wp2) [10.000]
111.701: do_hover auv wpZ wpZ3) [16.710]
128.412: (cbserve auv wp23 iph) [10.000]
138.413: (correct_pecsiticon auv wp23) [10.000]

158.415: (correct_position auv wpzZ3) [10.000]

(
(
(
148.414: (cbhserve auv wp23 ipl) [10.000]
(
(

168 416: (do_hover auv wp23 wp22) [16.710]
215.329: (observe auv Wp26 1p?} [10. DGD]

235 331: [do_hover auv wp26 wp21) [23 17?]
258.509: (cbhserve auv wpZl ipZ2) [10.000]
268.510: (correct_position auv wp2l) [10.000]
278.511: (do_hover auv wpZl wp27T) [21.255]
299.767: (observe auv wpz27 ip8) [10.000]
309.768: (correct_position auv wp27) [10.000]
319.769: (cbserve auv wp27 iph) [10.000]
329.770: (correct_pecsiticon auv wp27) [10.000]
339.771: (do_hover auv wpZ27 wplT) [23.597]
363 369: {do hover auv wpl7 wp25) [21 413]

401.494: (dc_hover auv wp32 wp36 [21 451]

o
432 947 {correct_p051tlon auv wp36) [lD.GDD]
442.948: (ocbserve auv wp3bt iplh) [10.000]

Outline

« Why PDDL Planning for Robotics?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Planning with Uncertainty

Uncertainty and lack of knowledge is a huge part of Al Planning for Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.
- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in Al Planning

Some uncertainty can be
handled at planning
time:

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

finalise_classification_success ‘ | finalise_classification_success | | finalise_classification_fail ‘

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
P rOCeSS . observe-classifiable_on_attempt |

!

| observe-classifiable_on_attempt |

- Conditional Planning | [opserve assiatie_on attemp |
with Contingent - i

ﬁnaIise_classiﬁcation_success| | ﬁnaIise_classiﬁcation_success| | ﬁnalise_classiﬁcation_success| | finalise_classification_fail

Planners. (e.g. ROSPlan W/’A

with Contingent-FF)

Uncertainty in Al Planning

Some uncertainty can be
handled at planning
time:

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

| finalise_classification_success | | finalise_classification_fail ‘

- Fully-Observable Non-
deterministic planning.

finalise_classification_success ‘

- Partially-observable
Markov decision
Process.

observe-classifiable_on_attempt |

| ™

| observe-classifiable_on_attempt |

- Conditional Planning — —
Wit h CO nti n ge nt finalise_classification_success | | finalise_classification_success | | finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPlan W/’A

with Contingent-FF)

Uncertainty in Al Planning

Some uncertainty can be
handled at planning
time:

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

| finalise_classification_success | | finalise_classification_fail ‘

- Fully-Observable Non-
deterministic planning.

finalise_classification_success ‘

- Partially-observable
Markov decision
Process.

| observe-classifiable_on_attempt |

- Conditional Planning — —
W it h C 0 n ti n ge nt finalise_classification_success | | finalise_classification_success | | finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPlan W/’A

with Contingent-FF)

Uncertainty in Al Planning

Some uncertainty can be
handled at planning

tl m e : observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

- F u I IY‘O bse rva b I e N O n - ﬁnaIise_classiﬁcation_success‘ | finalise_classification_success | | finalise_classification_fail ‘
deterministic planning.

- Partially-observable
Markov decision

Process.
- Conditional Planning J//ML%M
Wit h Co nti nge nt finalise_classification_success | finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPIlan

with Contingent-FF) [t

Uncertainty in Al Planning

Some uncertainty can be
handled at planning

tl m e : observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

- F u I IY‘O bse rva b I e N O n - ﬁnaIise_classiﬁcation_success‘ | finalise_classification_success | | finalise_classification_fail ‘
deterministic planning.

- Partially-observable
Markov decision

Process.
- Conditional Planning J//ML%M
Wit h Co nti n ge nt finalise_classification_success finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPIlan
with Contingent-FF)

ROSPIlan: Planning in the Robot Operating
System

