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ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.
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ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

<launch>
<include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
<include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>

<arg name="odom_topic" default="odom" />
<arg name="laser_topic" default="scan" />

<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />   
<remap from="odom" to="$(arg odom_topic)"/>
<remap from="scan" to="$(arg laser_topic)"/>

</node>
</launch>



ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

The actionlib package standardizes the interface for preemptable tasks.

For example:

- navigation,

- performing a laser scan

- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for 

sending task:

- goals

- feedback

- result



ROS Basics

Aside from numerous tools, Actionlib provides standard messages for 
sending task:

- goals

- feedback

- result
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose
std_msgs/Header header

uint32 seq
time stamp
string frame_id

geometry_msgs/Pose pose
geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w



Plan Execution 1: Very simple 

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.
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Plan Execution 1: Very simple 

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

Red boxes are components of 

ROSPlan. They correspond to 

ROS nodes.

The domain and problem file can 

be supplied

- in launch parameters

- as ROS service parameters



Plan Execution 1: Very simple 

Dispatch

rosplan_dispatch_msgs/CompletePlan

ActionDispatch[] plan

int32 action_id

string name

diagnostic_msgs/KeyValue[] parameters

string key

string value

float32 duration

float32 dispatch_time



A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

- timed execution

- Petri-Net plans

- Esterel Plans

- etc.
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1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.
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How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

The ActionDispatch message is received by a listening

interface node, and becomes a goal for control.

A dispatch loop without feedback



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000

0.000:  (goto_waypoint wp0) [10.000]

10.01: (observe ip3) [5.000]

15.02: (grasp_object box4) [60.000]

A dispatch loop without feedback



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

Feedback is returned to the simple dispatcher

(action success or failure) through a ROS message:

ActionFeedback.

A dispatch loop without feedback



Plan Execution Failure

This form of simple dispatch has some problems. The robot often exhibits 

zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan fails, but the robot doesn't notice.



Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.



Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan 

again, from the new current state, without human intervention.

The problem file must be regenerated.



PDDL Model

To generate the problem file automatically, the agent 

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 

called the Knowledge Base.



PDDL Model

To generate the problem file automatically, the agent 

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 

called the Knowledge Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative



PDDL Model

To generate the problem file automatically, the agent 

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 

called the Knowledge Base.

From this, the initial state of a new planning problem can 

be created.

ROSPlan contains a node which

will generate a problem file for the

ROSPlan planning node.



PDDL Model

The model must be continuously updated from sensor 

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the 

Knowledge Base.



PDDL Model

The model must be continuously updated from sensor 

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the 

Knowledge Base.
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance



ROSPlan components



ROSPlan components



Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.



Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE
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There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute 

the plan for a long time without purpose.

The success or failure of an action can sometimes not be understood 

outside of the context of the whole plan.



Bad Behaviour 2: Plan Failure

There should be 

diagnosis at the 

level of the plan.

If the plan will fail in 

the future, the robot 

should not continue 

to execute the plan 

for a long time 

without purpose.



Bad Behaviour 2: Plan Failure

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain,

and the roadmap might not be correct.



Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around 

to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.



Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

ROSPlan validates using VAL. [Fox et al. 2005]



ROSPlan: Default Configuration

Now the system is more 

complex:

- PDDL model is 

continuously updated from 

sensor data.

- problem file is 

automatically generated.
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ROSPlan: Default Configuration

Now the system is more 

complex:

- PDDL model is 

continuously updated from 

sensor data.

- problem file is 

automatically generated.

- the planner generates a 

plan.

- the plan is dispatched 

action-by-action.

- feedback on action 

success and failure.

- the plan is validated 

against the current model.



Plan Execution 2: Very Simple 

Temporal Dispatch

The real world requires a temporal and 

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal 

constraints, and try to dispatch the plan 

as a sequence of actions?
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The real world requires a temporal and 

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal 

constraints, and try to dispatch the plan 

as a sequence of actions?



Temporal Constraints

The plan execution loop could instead 

dispatch actions at their estimated

timestamps.

However, in the real world there are 

many uncontrollable durations and 

events. The estimated duration of 

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]
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Temporal Constraints

The plan execution loop could instead 

dispatch actions at their estimated

timestamps.

However, in the real world there are 

many uncontrollable durations and 

events. The estimated duration of 

actions is rarely accurate.

The plan execution loop could dispatch 

actions, while respecting the causal 

ordering between actions.
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24.32: (clean_chain wp2) [60.0]
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An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are 
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STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are 

not violated.

Setting t(b1) == t(b2) will always obey 
the temporal constraints.



STPUs: Strong controllability

The STPU is not strongly controllable, but it is obviously executable.

It is dynamically controllable.

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are 

not violated.



STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete 
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated 
time points in advance.



STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete 
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated 
time points in advance.



STPUs: Dynamic controllability

Not all problems will have solutions have any kind of controllability.

This does not mean they are impossible to plan or execute.

To reason about these kinds of issues we need to use a plan 

representation sufficient to capture

- the difference between controllable and uncontrollable durations,

- causal orderings, and

- temporal constraints.



Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation 
sufficient to capture the controllable and uncontrollable durations, causal 
orderings, and temporal constraints.

The representation of a plan is coupled with the

choice of dispatcher.

The problem generation and planner are not

necessarily bound by the choice of

representation.



Plan Execution 3: Conditional 

Dispatch

Uncertainty and lack of knowledge is a huge part of AI Planning for 

Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.



Uncertainty in AI Planning

Some uncertainty can 
be handled at planning 
time:

- Fully-Observable 
Non-deterministic 
planning.

- Partially-observable 
Markov decision 
Process.

- Conditional Planning 
with Contingent 
Planners. (e.g. 
ROSPlan with 
Contingent-FF)



Plan Execution 4: Temporal and 

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional 

reasoning. Combining these two kinds of uncertainty can result in very 

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]
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Plan Execution 4: Temporal and 

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional 

reasoning. Combining these two kinds of uncertainty can result in very 

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

ROSPlan is integrated with the PNPRos library for the representation and 

execution of Petri Net plans. [Sanelli, Cashmore, Magazzeni, and Iocchi; 2017]
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components in the 

system. Changing any 
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change the robot 

behaviour, and 
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Plan Execution 

depends upon many 

components in the 
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one of which will 

change the robot 
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under which the plan 

will succeed or fail.

Required input
Available feedback
Preemptable execution
Local recovery behaviour
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Summary of Very Simple Plan Execution

Available sensors
Semantic evaluation
Passive vs. active
User input
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system. Changing any 
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change the robot 
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Summary of Very Simple Plan Execution

Plan validation
Condition checking
Temporal or numeric models
Knowledge reasoning



Plan Execution 

depends upon many 

components in the 

system. Changing any 

one of which will 

change the robot 

behaviour, and 

change the criteria 

under which the plan 

will succeed or fail.

Summary of Very Simple Plan Execution

Re-planning
Plan repair
Problem and domain regeneration
Opportunity planning
Plan merging
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plan is an emergent 

behaviour of the 

whole system.

Summary of Very Simple Plan Execution



Plan Execution 

depends upon many 

components in the 

system. Changing any 

one of which will 

change the robot 

behaviour, and 

change the criteria 

under which the plan 

will succeed or fail.

The execution of a 

plan is an emergent 

behaviour of the 

whole system.

Summary of Very Simple Plan Execution



Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour 

might move toward achievement of multiple goals together.



Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour 

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)



Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour 

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning process, 

and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.



Dispatching more than a Single Plan

How do you plan from future situations that you can't predict?

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search 

scenario. For tracking targets, tidying household objects, or interacting 

with people.



Dispatching more than a Single Plan
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Hierarchical and Recursive Planning

For each task we generate a tactical plan.
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For each task we generate a tactical plan. The time and resource constraints 

are used in the generation of the strategic problem.

A strategic plan is generated that does not violate the time and resource 

constraints of the whole mission.

Hierarchical and Recursive Planning



When an abstract “complete_mission” action is dispatched, the tactical 

problem is regenerated, replanned, and executed.

Hierarchical and Recursive Planning



When an abstract “complete_mission” action is dispatched, the tactical 

problem is regenerated, replanned, and executed.

The tactical mission is 

executed by a complete 

planning system.

[Cashmore et al. 2015]

Hierarchical and Recursive Planning



Hierarchical and Recursive Planning

Observing an object has 

two outcomes:

- Success. The object 

is classified or 

recognised

- Failure. The object 

type is still unknown, 

but new viewpoints 

are generated to 

discriminate between 

high-probability 

possibilities.



Hierarchical and Recursive Planning

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0]

0.000: (pickup-object) [16.0]

0.000: (goto_waypoint) [10.0]

The action corresponds 

to a short tactical plan to 

observe viewpoints.
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Hierarchical and Recursive Planning

The action corresponds 

to a short tactical plan to 

observe viewpoints.

The next tactical plan 

can only be generated 

once the new viewpoints 

are known.



Hierarchical and Recursive Planning

The components of 

the system are the 

same as the very 

simple dispatch.

The behaviour of 

the robot is very 

different.



Hierarchical and Recursive Planning

The components of 

the system are the 

same as the very 

simple dispatch.

The behaviour of 

the robot is very 

different.

The execution of a 

plan is an 

emergent 

behaviour of the 

whole system.

Both the 

components and 

how they are used. 



New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution 

of a plan fragment, then the currently executing 

plan can be pushed onto the stack and a new 

plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic 

Planning
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Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.



Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.

Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the 

advancement towards multiple goals.

[Mudrova et al. 2016]
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always incomplete as 

well as inaccurate.

The plan is validated 
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rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance
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move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000
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The domain model is 

always incomplete as 

well as inaccurate.

The plan is validated 

against a model that is 

continually changing 

and only partially 

sensed.

The RosPNP Library 

encapsulates both 

action dispatch and 

state updates.

In a Petri Net plan the 

only state estimation 

performed is explicit in 

the plan.

ROSPlan and PNP



ROSPlan documentation and source:
kcl-planning.github.io/ROSPlan


