Petri Net Plans
Execution Framework

SAPIENZA

; j UNIVERSITA DI ROMA

Luca locchi

Dipartimento di Ingegneria Informatica
Automatica e Gestionale

Petri Net Plans

 High-level plan representation formalism
based on Petri nets

e Explicit and formal representation of actions
and conditions

 Execution Algorithm implemented and tested
in many robotic applications

 QOpen-source release with support for
different robots and development
environments (ROS, Naoq;i, ...)

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 2

Petri Net Plans library

PNP library contains pnp.dis.uniromal.it

* PNP execution engine

-
e PNP generation tools I_E E
 Bridges: ROS, Naoqi :'.II-'

(Nao, Pepper) E _
|8

o ulll

[Ziparo et al., JAAMAS 2011]

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan representation in PNP

e Petri nets are exponentially more compact than
other structures (e.g., transition graphs) and can
thus efficiently represent several kinds of plans:

— Linear plans

— Contingent/conditional plans
— Plans with loop

— Policies

e PNP can be used as a general plan execution
framework

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 4

Plan traslation in PNP

* PNPgen is a library that translates a plan (the
output of some planning system) in a PNP.

* PNPgen includes additional facilities to extend
the generated PNP with constructs that are not
available on the planning system (e.g., interrupt
and recovery procedures).

* Plan formats supported:
ROSPlan (linear/conditional), HATP, MDP policies

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 5

PNP ROS

e PNP-ROS is a bridge for executing PNPs in a
ROS-based system.

e PNP-ROS uses the ROS actionlib protocol to
control the execution of the actions and ROS
topics and parameters to access the robot's
knowledge.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 3

PNP execution framework

@
N

®.

=
c~_"

Domain

ROSPlan i %u
Goal Contingent-FF =3 o
= 2
=, P
—r 1
- x
(@)
S 2
Execution g
Rules

Planning and Execution Component

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

ROSPlan + PNPgen + PNP-ROS

[A p r‘o pe r i nteg ratio n Of PDDL Domain File == Problem Generation

PDDL PROBLEM INSTANCE

O Plan generatlon Knowledge Base

O Plan execution i
0 ROS action execution P,anparse,

and condition

H

monitoring ; — l
. . A B
provides an effective
framework for robot oot M
planning and execution.
¥

Platform

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 8

Outline

e Petri Nets

e Petri Net Plans
e Execution rules
e PNP-ROS

* Demo

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 9

Petri Net definition

Definition
PN = (P, T,F, W, M)
@ P={p1,po,...,Pm} is a finite set of places.
@ T ={t,b,..., ta}is afinite set of transitions.
@ FC(PxT)U(T x P)is a set of edges.
Q

W: F— {1,2,3,...} is a weight function and w(ns, ny) denotes
the weight of the edge from ns to ng.

My : P— {0,1,2,3,...} is the initial marking.
@ PUT#Pand PNT =1

O O

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Petri Net firing rule

Definition
@ A transition t is enabled, if each input place p; (i.e. (p;,t) € F) is
marked with at least w(p;, t) tokens.

@ An enabled transition may or may not fire, depending on whether
related event occurs or not.

@ If an enabled transition t fires, w(p;, t) tokens are removed for
each input place p; and w(t, p,) are added to each output place
po such that (t, po) € F.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Petri Net Plans

e Petri Net Plans (PNP) are defined in terms of

e QOperators

e Actions iti
. | - sequence, conditional and
- ordinary actions loops
- sensing actions - interrupt
- fork/join

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP Actions

28 t, P
P. ts P e P, Q
: e, B,
Ordinary Action Sensing Action

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP Actions

28 t, P
P. ts P e P, Q
: e, B,
Ordinary Action Sensing Action

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP Operators

gotoBall kick

O—~{—0—HO+—0O-[O

B fimep, n - O
O—-0 O S-S

(a) Interrupt (b) Fork (c) Join

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP interrupt

defend

stoiensa|||:|—£©"|: 'O_’D—’O
O—{] £'<5;+E%~O

gotoBall

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP concurrency

— reachedBall , __
Or-—=O—1HQ)
: »: 1

. W
c— gotoBall —

oRikes Vel

reachedBall

O O

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 1: sequence and loop

o) -

goal

gotopose_z_z_o.sAt_art"‘ gotopose_2_2_0.end home.start ~_ home.end

gotopose_2_2 0.exec

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 2: fork and join

o init
init.start

S
goal
Init. exec "
ﬂa ’ “

fork é gotopose_2 2 O.start gotopose_2 2 0.end

O

4>I » ,I@ home.start home.end

rk1 foini ™ 1 : I
I—O - join home.exec
- join

c join2

|

Q.

gotopose_2_2_0.exec

O

fork2 Wwa
wave,start wave.end

1@,

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 3: sensing and loop

init
- goal
init.start EommmiS
init.exec
sensel.end [{not obstacle)] home.end
init.end gotopose 6 2 O.start gotopose_6_2_0.end home.star‘t"'--—v.,__a
1@4 o410
sensel.start home.exec

I gotopose 6 _2_0.exec P2
sensel.exec I4’041 4"
wave. exec

wave,start wave.end
sensel.end [obstacle]

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 4. interrupt

T AN . goal

init.start Co———

init.exec

l N\ home.end
init.end gotopose 6 2 O.start gotopose_6.2 0.end home.start

1 home.exec

gotopose 6 2 0.exec

ol o

Wave, exec
wave,start wave.end

Fa—

gotopose_6 2 O.interrupt [obstacle]

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Start

Plan 5: multi robot

robotO#pathLeft.exec

o4O]

robot0#pathLeft.end

robotO#pathlLeft.start

Fork robotl #pathRight.exec

P3

Join

W,

P2 robotl #pathRight.start robot1 #pathRight.end

robot0#home.end robot0#home.start

.

robot0#home.exec

O

——
r

robotl #home.exec

P6

Fork

Join —~
PIZO I‘ U‘ I‘

robotl #home.end robotl #home.start

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

P10

PNP Execution Algorithm

procedure execute(PNP (P, T,F, W, M,, G))

1: CurrentMarking = My
2: while CurrentMarking ¢ G do

3: foralltc T do

4 if enabled(t) N KB |= t.¢ then

5 handleTransition(t) procedure handleTransition(t)

6: CurrentMarking = fire(t) if t.t = start then

7: end if If-a-?l‘aft() i
elseift.t = end then

8: end for t.a.end()

9: end while else if t.t = interrupt then

t.a.interrupt()

end if

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Correctness of PNP execution

* PNP execution is correct with respect to an

operational semantics based on Petri nets and the
robot's local knowledge.

Theorem

[Z106] If a PNP can be correctly executed, then the Execution
Algorithm computes a sequence of transitions { My, ..., M}, such that

My is the initial marking, M,, is a goal marking, and M; = M;, 4, for
eachi=0,...,n—1.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP sub-plans

* Plans can be organized in a hierarchy, allowing
for modularity and reuse

e Sub-plans are like actions:
— when started, the initial marking is set
— when goal marking is reached, the sub-plan ends

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plans with variables

[condition_@X] sets the value of variable X
action @X uses the value of variable X

Example: given a condition personAt @X, the occurrence of
personAt _B115 sets the variable @X to “B115”, next action
goto @X will be interpreted as goto B115

move_@X.end [personhere] t h
move_@X.start [personhere] say_welcome.start ~say_welcome.end [not personhere)

A—O—1O4—O1— O—4-O0A4—O—1—0— O

say_goodbye.exec
init move_@X exec say welcome.exec Qe C_goodbye = 4
A C_search_person -

[personit_@X] say_goodbye.start say_goodbye.end

move_home.end move_home.start

move_home.exec P2

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Execution rules

Adding to the conditional plan

* interrupt (special conditions that determine
interruption of an action)

e recovery paths (how to recovery from an interrupt)
e social norms
e parallel execution

Main feature

e Execution variables are generally different from the
ones in the planning domain (thus not affecting
complexity of planning)

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Execution rules

Examples

If personhere and closetotarget during goto do
skip_action

If personhere and not closetotarget during goto do
say hello; waitfor_not_personhere;
restart_action

If lowbattery during * do recharge; fail_plan
after receivedhelp do say thanks

after endinteraction do say goodbye

when say do display

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP-ROS

* Bridge between PNP and ROS

* Allows execution of PNP under ROS using the
actionlib module

e Defines a generic PNPAction and an
ActionClient for PNPActions

e Defines a client service PNPConditionEval to
evaluate conditions

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP-ROS

PNP-ROS

PNP PNP
ActionClient ActionServer

PNP PNP Actions and
ServiceClient Service \ conditions /
\ PNP lib

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP-ROS

User development:

1. implement actions and conditions
2. write a PNPActionServer

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNPActionServer

class PNPActionServer
{
public:
PNPActionServer();
~PNPActionServer();
void start();
// To be provided by actual implementation

virtual void actionExecutionThread(string action_name,
string action_params, bool *run);

virtual int evalCondition(string condition); // 1: true, O: false; -
1:unknown

}

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNPActionServer

class PNPActionServer

{
public:

// For registering action functions (MR=multi-robot version)
void register_action(string actionname, action_fn_t actionfn);
void register _MRaction(string actionname, MRaction_fn_t actionfn);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

MyPNPActionServer

#Include "MyActions.h"

class MyPNPActionServer : public PNPActionServer

{
MyPNPActionServer() : PNPActionServer() {

register_action("init",&init);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

MyPNPActionServer

PNP_cond_pub =// asynchronous conditions
handle.advertise<std_msgs::String>("PNPConditionEvent", 10);

Function SensorProcessing

{

std_msgs::String out;
out.data = condition; // symbol of the condition
PNP_cond_pub.publish(out);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

MyPNPActionServer

Function SensorProcessing

{

string param = “PNPconditionsBuffer/<CONDITION>";
node handle.setParam(param, <VALUE {1|0}>);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Demo

Virtual machine available in the
Tutorial web site

b Ub14_RosIndigo_RosPlan_PNP [In esecuzione] - Oracle VM VirtualBox - O

@ Applications Places [-] £) P* B ty @ = <) 1232am %

m

d_robocupathome.pddl (~/src/ROSPlan/src/rosplan/rosplan_demos/common) - gedit

File Edit View Search Tools Documents Help

!_ POpen - B8 save ._:. €~ Undo

1C

INFO] [149

ol [README.md x d_robocupathome.pddl| x p_cocktailparty.pddl x b
1 (define (domain robocupathome)
2 (:requirements :strips :typing :disjunctive-preconditions)
3
4 (:types location)
5
6 (:predicates
7
8 (outdoor)
9 (inapt)
10 (pos ?r - location)
11 (wasRoom ?r - location)
rostopic pu 12 X
13 (Kperson ?r - location)
) 14 (enabledpd)
rostopic puigmls (enabledph)
16 (cancallperson)
rostopic pullieii
18 (persondetected)
S 19 (personhgre)
20 (personwillcome)

PlainText » |TabWidth:4 ~
[viki@c... B d robo... : m Simula... roslaunch m AUTOG... roslaun... roslaun... roslaun.
td = & B &) & % crrL (DESTRA)

Ln 193, Col 36

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Demo

Virtual machine available in the
Tutorial web site

Ub14_RosIndigo_RosPlan_PNP [In esecuzione] - Oracle VM VirtualBox

=

-

A

S RPN, o sof 43

r..n.

B

L
LD
Qe
-

im 1Es 000msec [1.0] — - . = n 5 o ®
[viki@c... B d robo... [PNPgen] EZ [JARP... M c m Simula... roslaunch m AUTOG... roslaun... roslaun... roslaun...
QOo@y o =mE @ ® cr oesTrRY

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Demo

e RoboCup@Home domain

* Planning problems for @Home tasks
— Navigation (rulebook 2016)
— Cocktail Party (rulebook 2017)

NOTE: We are using this framework in our
SPQRel team that will compete in
RoboCup@Home 2017 SSPL

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

References

Petri Net Plans - A framework for collaboration and coordination in multi-robot
systems. V. A. Ziparo, L. locchi, Pedro Lima, D. Nardi, P. Palamara. Autonomous
Agents and Multi-Agent Systems, vol. 23, no. 3, 2011.

Dealing with On-line Human-Robot Negotiations in Hierarchical Agent-based
Task Planner. E. Sebastiani, R. Lallement, R. Alami, L. locchi. In Proc. of
International Conference on Automated Planning and Scheduling (ICAPS), 2017.

Short-Term Human Robot Interaction through Conditional Planning and
Execution. V. Sanelli, M. Cashmore, D. Magazzeni, L. locchi. In Proc. of
International Conference on Automated Planning and Scheduling (ICAPS), 2017.

A practical framework for robust decision-theoretic planning and execution for
service robots. L. locchi, L. Jeanpierre, M. T. Lazaro, A.-I. Mouaddib. In Proc. of
International Conference on Automated Planning and Scheduling (ICAPS), 2016.

Explicit Representation of Social Norms for Social Robots. F. M. Carlucci, L.
Nardi, L. locchi, D. Nardi. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2015.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

