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Petri Net Plans

 High-level plan representation formalism
based on Petri nets

e Explicit and formal representation of actions
and conditions

 Execution Algorithm implemented and tested
in many robotic applications

 QOpen-source release with support for
different robots and development
environments (ROS, Naoq;i, ...)
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Petri Net Plans library

PNP library contains pnp.dis.uniromal.it

* PNP execution engine

-
e PNP generation tools I_E E
 Bridges: ROS, Naoqi :'.II-'
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[Ziparo et al., JAAMAS 2011]
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Plan representation in PNP

e Petri nets are exponentially more compact than
other structures (e.g., transition graphs) and can
thus efficiently represent several kinds of plans:

— Linear plans

— Contingent/conditional plans
— Plans with loop

— Policies

e PNP can be used as a general plan execution
framework
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Plan traslation in PNP

* PNPgen is a library that translates a plan (the
output of some planning system) in a PNP.

* PNPgen includes additional facilities to extend
the generated PNP with constructs that are not
available on the planning system (e.g., interrupt
and recovery procedures).

* Plan formats supported:
ROSPlan (linear/conditional), HATP, MDP policies
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PNP ROS

e PNP-ROS is a bridge for executing PNPs in a
ROS-based system.

e PNP-ROS uses the ROS actionlib protocol to
control the execution of the actions and ROS
topics and parameters to access the robot's
knowledge.
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PNP execution framework
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ROSPlan + PNPgen + PNP-ROS
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Outline

e Petri Nets

e Petri Net Plans
e Execution rules
e PNP-ROS

* Demo
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Petri Net definition

Definition
PN = (P, T,F, W, M)
@ P={p1,po,...,Pm} is a finite set of places.
@ T ={t,b,..., ta}is afinite set of transitions.
@ FC(PxT)U(T x P)is a set of edges.
Q

W: F— {1,2,3,...} is a weight function and w(ns, ny) denotes
the weight of the edge from ns to ng.

My : P— {0,1,2,3,...} is the initial marking.
@ PUT#Pand PNT =1

O O
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Petri Net firing rule

Definition
@ A transition t is enabled, if each input place p; (i.e. (p;,t) € F ) is
marked with at least w(p;, t) tokens.

@ An enabled transition may or may not fire, depending on whether
related event occurs or not.

@ If an enabled transition t fires, w(p;, t) tokens are removed for
each input place p; and w(t, p,) are added to each output place
po such that (t, po) € F.
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Petri Net Plans

e Petri Net Plans (PNP) are defined in terms of

e QOperators

e Actions iti
. | - sequence, conditional and
- ordinary actions loops
- sensing actions - interrupt
- fork/join
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PNP Actions

28 t, P
P. ts P e P, Q
: e, B,
Ordinary Action Sensing Action
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PNP Actions

28 t, P
P. ts P e P, Q
: e, B,
Ordinary Action Sensing Action
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PNP Operators

gotoBall kick
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(a) Interrupt (b) Fork (c) Join
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PNP interrupt

defend

stoiensa|||:|—£©"|: 'O_’D—’O
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gotoBall
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PNP concurrency
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Plan 1: sequence and loop
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Plan 2: fork and join
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Plan 3: sensing and loop

init
- goal
init.start EommmiS
init.exec
sensel.end [{not obstacle)] home.end
init.end gotopose 6 2 O.start gotopose_6_2_0.end home.star‘t"'--—v.,__a
1@4 o410
sensel.start home.exec

I gotopose 6 _2_0.exec P2
sensel.exec I4’041 4"
wave. exec

wave,start wave.end
sensel.end [obstacle]
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Plan 4. interrupt

T AN . goal
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Start

Plan 5: multi robot

robotO#pathLeft.exec

o4O ]

robot0#pathLeft.end

robotO#pathlLeft.start

Fork robotl #pathRight.exec
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Join
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PNP Execution Algorithm

procedure execute(PNP (P, T,F, W, M,, G))

1: CurrentMarking = My
2: while CurrentMarking ¢ G do

3: foralltc T do

4 if enabled(t) N KB |= t.¢ then

5 handleTransition(t) procedure handleTransition(t)

6: CurrentMarking = fire(t) if t.t = start then

7: end if If-a-?l‘aft() i
elseift.t = end then

8: end for t.a.end()

9: end while else if t.t = interrupt then

t.a.interrupt()

end if
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Correctness of PNP execution

* PNP execution is correct with respect to an

operational semantics based on Petri nets and the
robot's local knowledge.

Theorem

[Z106] If a PNP can be correctly executed, then the Execution
Algorithm computes a sequence of transitions { My, ..., M}, such that

My is the initial marking, M,, is a goal marking, and M; = M;, 4, for
eachi=0,...,n—1.
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PNP sub-plans

* Plans can be organized in a hierarchy, allowing
for modularity and reuse

e Sub-plans are like actions:
— when started, the initial marking is set
— when goal marking is reached, the sub-plan ends
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Plans with variables

[condition_@X] sets the value of variable X
action @X uses the value of variable X

Example: given a condition personAt  @X, the occurrence of
personAt _B115 sets the variable @X to “B115”, next action
goto @X will be interpreted as goto B115

move_@X.end [personhere] t h
move_@X.start [personhere]  say_welcome.start ~say_welcome.end [not personhere)

A—O—1O4—O1— O—4-O0A4—O—1—0— O

say_goodbye.exec
init move_@X exec say welcome.exec Qe C_goodbye = 4
A C_search_person -

[personit_@X] say_goodbye.start say_goodbye.end

move_home.end move_home.start

move_home.exec P2
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Execution rules

Adding to the conditional plan

* interrupt (special conditions that determine
interruption of an action)

e recovery paths (how to recovery from an interrupt)
e social norms
e parallel execution

Main feature

e Execution variables are generally different from the
ones in the planning domain (thus not affecting
complexity of planning)
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Execution rules

Examples

If personhere and closetotarget during goto do
skip_action

If personhere and not closetotarget during goto do
say hello; waitfor_not_personhere;
restart_action

If lowbattery during * do recharge; fail_plan
after receivedhelp do say thanks

after endinteraction do say goodbye

when say do display
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PNP-ROS

* Bridge between PNP and ROS

* Allows execution of PNP under ROS using the
actionlib module

e Defines a generic PNPAction and an
ActionClient for PNPActions

e Defines a client service PNPConditionEval to
evaluate conditions
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PNP-ROS

PNP-ROS

PNP PNP
ActionClient ActionServer

PNP PNP Actions and
ServiceClient Service \ conditions /
\ PNP lib
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PNP-ROS

User development:

1. implement actions and conditions
2. write a PNPActionServer
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PNPActionServer

class PNPActionServer
{
public:
PNPActionServer();
~PNPActionServer();
void start();
// To be provided by actual implementation

virtual void actionExecutionThread(string action_name,
string action_params, bool *run);

virtual int evalCondition(string condition); // 1: true, O: false; -
1:unknown

}
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PNPActionServer

class PNPActionServer

{
public:

// For registering action functions (MR=multi-robot version )
void register_action(string actionname, action_fn_t actionfn);
void register _MRaction(string actionname, MRaction_fn_t actionfn);
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MyPNPActionServer

#Include "MyActions.h"

class MyPNPActionServer : public PNPActionServer

{
MyPNPActionServer() : PNPActionServer() {

register_action("init",&init);
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MyPNPActionServer

PNP_cond_pub =// asynchronous conditions
handle.advertise<std_msgs::String>("PNPConditionEvent", 10);

Function SensorProcessing

{

std_msgs::String out;
out.data = condition; // symbol of the condition
PNP_cond_pub.publish(out);
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MyPNPActionServer

Function SensorProcessing

{

string param = “PNPconditionsBuffer/<CONDITION>";
node handle.setParam(param, <VALUE {1|0}>);
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Demo

Virtual machine available in the
Tutorial web site

b Ub14_RosIndigo_RosPlan_PNP [In esecuzione] - Oracle VM VirtualBox - O

@ Applications Places [-] £) P* B ty @ = <) 1232am %

m

d_robocupathome.pddl (~/src/ROSPlan/src/rosplan/rosplan_demos/common) - gedit

File Edit View Search Tools Documents Help

!_ POpen - B8 save ._:. €~ Undo

1C

INFO] [149

ol [ README.md x d_robocupathome.pddl| x p_cocktailparty.pddl x b
1 (define (domain robocupathome)
2 (:requirements :strips :typing :disjunctive-preconditions)
3
4 (:types location)
5
6 (:predicates
7
8 (outdoor)
9 (inapt)
10 (pos ?r - location)
11 (wasRoom ?r - location)
rostopic pu 12 X
13 (Kperson ?r - location)
) 14 (enabledpd)
rostopic puigmls (enabledph)
16 (cancallperson)
rostopic pullieii
18 (persondetected)
S 19 (personhgre)
20 (personwillcome)

PlainText » |TabWidth:4 ~
[viki@c... B d robo... : m Simula... roslaunch m AUTOG... roslaun... roslaun... roslaun.
td = & B & ) & % crrL (DESTRA)

Ln 193, Col 36
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Demo

Virtual machine available in the
Tutorial web site

Ub14_RosIndigo_RosPlan_PNP [In esecuzione] - Oracle VM VirtualBox
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Demo

e RoboCup@Home domain

* Planning problems for @Home tasks
— Navigation (rulebook 2016)
— Cocktail Party (rulebook 2017)

NOTE: We are using this framework in our
SPQRel team that will compete in
RoboCup@Home 2017 SSPL
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