
&ROORFDWHG�ZLWK�WKH���WK ,QWHUQDWLRQDO�&RQIHUHQFH�RQ�$XWRPDWHG�3ODQQLQJ�DQG�6FKHGXOLQJ��,&$36��Ȼ %HUNHOH\��86$�Ȼ ������-XO\�����

�¶Ã¼¶½¶Êʁ�����
ϿЀÅ¹ Æ½Ê�ЀϾϿЇ

�ÃÀ´¶¶µº¿¸Ä ʭ������ЀϾϿЇ

Ѐ¿µ �¿Å¶Ã¿²ÅºÀ¿²½��ÀÃ¼Ä¹ÀÁ�À¿

�ÉÁ½²º¿²³½¶ �� �½²¿¿º¿¸

0LVVLRQ�

([SODLQDEOH $UWLILFLDO ,QWHOOLJHQFH �;$,� FRQFHUQV WKH FKDOOHQJH RI VKHGGLQJ OLJKW RQ
RSDTXH PRGHOV LQ FRQWH[WV IRU ZKLFK WUDQVSDUHQF\ LV LPSRUWDQW� L�H� ZKHUH WKHVH
PRGHOV FRXOG EH XVHG WR VROYH DQDO\VLV RU V\QWKHVLV WDVNV� ,Q SDUWLFXODU� DV $, LV
LQFUHDVLQJO\ EHLQJ DGRSWHG LQWR DSSOLFDWLRQ VROXWLRQV� WKH FKDOOHQJH RI VXSSRUWLQJ
LQWHUDFWLRQ ZLWK KXPDQV LV EHFRPLQJ PRUH DSSDUHQW� 3DUWO\ WKLV LV WR VXSSRUW
LQWHJUDWHG ZRUNLQJ VW\OHV� LQ ZKLFK KXPDQV DQG LQWHOOLJHQW V\VWHPV FRRSHUDWH LQ
SUREOHP�VROYLQJ� EXW DOVR LW LV D QHFHVVDU\ VWHS LQ WKH SURFHVV RI EXLOGLQJ WUXVW DV
KXPDQV PLJUDWH JUHDWHU FRPSHWHQFH DQG UHVSRQVLELOLW\ WR VXFK V\VWHPV� 7KH
FKDOOHQJH LV WR ILQG HIIHFWLYH ZD\V WR FKDUDFWHUL]H� DQG WR FRPPXQLFDWH� WKH
IRXQGDWLRQV RI $,�GULYHQ EHKDYLRU� ZKHQ WKH DOJRULWKPV WKDW GULYH LW DUH IDU IURP
WUDQVSDUHQW WR KXPDQV� :KLOH ;$, DW ODUJH LV SULPDULO\ FRQFHUQHG ZLWK OHDUQLQJ�EDVHG
DSSURDFKHV� PRGHO�EDVHG DSSURDFKHV DUH ZHOO VXLWHG ² DUJXDEO\ EHWWHU VXLWHG ² IRU
H[SODQDWLRQ� DQG ([SODLQDEOH $, 3ODQQLQJ �;$,3� FDQ SOD\ DQ LPSRUWDQW UROH LQ
DGGUHVVLQJ FRPSOH[GHFLVLRQ�PDNLQJ SURFHGXUHV�

$IWHU WKH VXFFHVV RI SUHYLRXV ZRUNVKRSV RQ ;$, DQG ;$,3� WKH PLVVLRQ RI WKLV
ZRUNVKRS LV WR PDWXUH DQG EURDGHQ WKH ;$,3 FRPPXQLW\� IRVWHULQJ FRQWLQXHG
H[FKDQJH RQ ;$,3 WRSLFV DW ,&$36�

7RSLFV

�)UDPHZRUNV�IRU�GHILQLQJ�PHDQLQJIXO�H[SODQDWLRQV�LQ�SODQQLQJ�DQG�VFKHGXOLQJ�FRQWH[WV�
� 5HSUHVHQWDWLRQ��RUJDQL]DWLRQ��DQG�PHPRU\�FRQWHQW�XVHG�LQ�H[SODQDWLRQ�
� 7KH�FUHDWLRQ�RI�VXFK�FRQWHQW�GXULQJ�SODQ�JHQHUDWLRQ�RU�XQGHUVWDQGLQJ�
� *HQHUDWLRQ�DQG�HYDOXDWLRQ�RI�H[SODQDWLRQV�
� 7KH�H[SODQDWLRQ�SURFHVV��L�H��WKH�ZD\�LQ�ZKLFK�H[SODQDWLRQV�DUH�FRPPXQLFDWHG�WR�KXPDQV�
�H�J���SODQ�VXPPDULHV��DQVZHUV�WR�TXHVWLRQV��

� 7KH�UROH�RI�NQRZOHGJH�DQG�OHDUQLQJ�LQ�H[SODLQDEOH�SODQQHUV�
� +XPDQ�YV�$,�PRGHOV�LQ�H[SODQDWLRQV�
� /LQNV�EHWZHHQ�H[SODLQDEOH�SODQQLQJ�DQG�RWKHU�GLVFLSOLQHV��H�J��VRFLDO�VFLHQFH��DUJXPHQWDWLRQ��
� 0RGHO�GLIIHUHQFHV�DQG�PRGHO�UHFRQFLOLDWLRQ�
� *RDO�UHDVRQLQJ�DQG�SODQ�H[SODQDWLRQV�
� ([FXVH�JHQHUDWLRQ��XQVROYDELOLW\��DQG�H[SODQDWLRQV�
� 8VH�FDVHV�DQG�DSSOLFDWLRQV�RI�H[SODLQDEOH�SODQQLQJ�

WĂŐĞ

DĂĐƌŽĐŽŐŶŝƚŝŽŶ͗�&ŽƵŶĚĂƚŝŽŶƐ�ĨŽƌ�WůĂŶŶŝŶŐ�ĂŶĚ��ǆƉůĂŶĂƚŝŽŶ
/ŶǀŝƚĞĚ�^ƉĞĂŬĞƌ͗�ZŽďĞƌƚ�Z͘�,ŽĨĨŵĂŶ

ϰ

�ƌĂŶĐŚŝŶŐͲ�ŽƵŶĚĞĚ��ŽŶƚŝŶŐĞŶƚ�WůĂŶŶŝŶŐ�ǀŝĂ��ĞůŝĞĨ�^ƉĂĐĞ�^ĞĂƌĐŚ
<ĞǀŝŶ�DĐ�ƌĞĂǀĞǇ͕ �<ŝŵ��ĂƵƚĞƌƐ͕�tĞŝƌƵ�>ŝƵ͕�:ƵŶ�,ŽŶŐ

ϱ

ZŽďƵƐƚ�'ŽĂů�ZĞĐŽŐŶŝƚŝŽŶ�ǁŝƚŚ�KƉĞƌĂƚŽƌͲ�ŽƵŶƚŝŶŐ�,ĞƵƌŝƐƚŝĐƐ
&ĞůŝƉĞ�DĞŶĞŐƵǌǌŝ͕��ŶĚƌĠ�'ƌĂŚů�WĞƌĞŝƌĂ͕�ZĂŵŽŶ�&͘ �WĞƌĞŝƌĂ

ϭϰ

dŽǁĂƌĚƐ�DŽĚĞůͲ�ĂƐĞĚ��ŽŶƚƌĂƐƚŝǀĞ��ǆƉůĂŶĂƚŝŽŶƐ�ĨŽƌ��ǆƉůĂŝŶĂďůĞ�WůĂŶŶŝŶŐ
�ĞŶũĂŵŝŶ�<ƌĂƌƵƉ͕�DŝĐŚĂĞů��ĂƐŚŵŽƌĞ͕��ĂŶŝĞůĞ�DĂŐĂǌǌĞŶŝ͕�dŝŵ�DŝůůĞƌ

Ϯϭ

�ŽŵĂŝŶͲŝŶĚĞƉĞŶĚĞŶƚ�WůĂŶ�/ŶƚĞƌǀĞŶƚŝŽŶ�tŚĞŶ�hƐĞƌƐ�hŶǁŝƚƚŝŶŐůǇ�&ĂĐŝůŝƚĂƚĞ��ƚƚĂĐŬƐ
^ĂĐŚŝŶŝ�tĞĞƌĂǁĂƌĚŚĂŶĂ͕��ĂƌƌĞůů�tŚŝƚůĞǇ͕ �DĂƌŬ�ZŽďĞƌƚƐ

ϯϬ

dŽǁĂƌĚƐ�ĂŶ�ĂƌŐƵŵĞŶƚĂƚŝŽŶͲďĂƐĞĚ�ĂƉƉƌŽĂĐŚ�ƚŽ�ĞǆƉůĂŝŶĂďůĞ�ƉůĂŶŶŝŶŐ
�ŶŶĂ��ŽůůŝŶƐ͕��ĂŶŝĞůĞ�DĂŐĂǌǌĞŶŝ͕�^ŝŵŽŶ�WĂƌƐŽŶƐ

ϯϵ

,ƵŵĂŶͲhŶĚĞƌƐƚĂŶĚĂďůĞ��ǆƉůĂŶĂƚŝŽŶƐ�ŽĨ�/ŶĨĞĂƐŝďŝůŝƚǇ�ĨŽƌ�ZĞƐŽƵƌĐĞͲ�ŽŶƐƚƌĂŝŶĞĚ�^ĐŚĞĚƵůŝŶŐ�WƌŽďůĞŵƐ
EŝŬůĂƐ�>ĂƵĨĨĞƌ͕ �hĨƵŬ�dŽƉĐƵ

ϰϰ

DŽĚĞůͲ&ƌĞĞ�DŽĚĞů�ZĞĐŽŶĐŝůŝĂƚŝŽŶ
^ĂƌĂƚŚ�^ƌĞĞĚŚĂƌĂŶ͕��ůďĞƌƚŽ�KůŵŽ͕��ĚŝƚǇĂ�WƌĂƐĂĚ�DŝƐŚƌĂ͕�^ƵďďĂƌĂŽ�<ĂŵďŚĂŵƉĂƚŝ

ϱϯ

�ǆƉůĂŝŶŝŶŐ�ƚŚĞ�^ƉĂĐĞ�ŽĨ�WůĂŶƐ�ƚŚƌŽƵŐŚ�WůĂŶͲWƌŽƉĞƌƚǇ��ĞƉĞŶĚĞŶĐŝĞƐ
ZĞďĞĐĐĂ��ŝĨůĞƌ͕ �DŝĐŚĂĞů��ĂƐŚŵŽƌĞ͕�:ƂƌŐ�,ŽĨĨŵĂŶŶ͕��ĂŶŝĞůĞ�DĂŐĂǌǌĞŶŝ͕�DĂƌĐĞů�^ƚĞŝŶŵĞƚǌ

ϲϭ

�ĞƐŝŐŶ�ĨŽƌ�/ŶƚĞƌƉƌĞƚĂďŝůŝƚǇ
�ŶĂŐŚĂ�<ƵůŬĂƌŶŝ͕�^ĂƌĂƚŚ�^ƌĞĞĚŚĂƌĂŶ͕�^ĂƌĂŚ�<ĞƌĞŶ͕�dĂƚŚĂŐĂƚĂ��ŚĂŬƌĂďŽƌƚŝ͕��ĂǀŝĚ�^ŵŝƚŚ͕�^ƵďďĂƌĂŽ�<ĂŵďŚĂŵƉĂƚŝ

ϲϵ

tŚĞŶ��ŐĞŶƚƐ�dĂůŬ��ĂĐŬ͗�ZĞďĞůůŝŽƵƐ��ǆƉůĂŶĂƚŝŽŶƐ
�ĞŶ�tƌŝŐŚƚ͕�DĂƌŬ�ZŽďĞƌƚƐ͕��ĂǀŝĚ�t͘��ŚĂ͕��ĞŶ��ƌƵŵďĂĐŬ

ϳϰ

�ŚĂůůĞŶŐĞƐ�ŽĨ��ǆƉůĂŝŶŝŶŐ��ŽŶƚƌŽů
�ĚƌŝĂŶ��ŐŽŐŝŶŽ͕�ZŝƚĐŚŝĞ�>ĞĞ͕��ŝŵŝƚƌĂ�'ŝĂŶŶĂŬŽƉŽƵůŽƵ

ϳϵ

KŶůŝŶĞ��ǆƉůĂŶĂƚŝŽŶ�'ĞŶĞƌĂƚŝŽŶ�ĨŽƌ�,ƵŵĂŶͲZŽďŽƚ�dĞĂŵŝŶŐ
DĞŚƌĚĂĚ��ĂŬĞƌƐŚĂŚƌĂŬ͕��Ğ�'ŽŶŐ͕��ŬŬĂŵĂŚĂĚĞǀŝ�,ĂŶŶŝ͕�zƵ��ŚĂŶŐ

ϴϳ

&ĞĂƚƵƌĞͲĚŝƌĞĐƚĞĚ��ĐƚŝǀĞ�>ĞĂƌŶŝŶŐ�ĨŽƌ�>ĞĂƌŶŝŶŐ�hƐĞƌ�WƌĞĨĞƌĞŶĐĞƐ
^ƌŝƌĂŵ�'ŽƉĂůĂŬƌŝƐŚŶĂŶ͕�hƚŬĂƌƐŚ�^ŽŶŝ͕�^ƵďďĂƌĂŽ�<ĂŵďŚĂŵƉĂƚŝ

ϵϲ

dŽǁĂƌĚƐ��ǆƉůĂŝŶĂďůĞ��/�WůĂŶŶŝŶŐ�ĂƐ�Ă�^ĞƌǀŝĐĞ
DŝĐŚĂĞů��ĂƐŚŵŽƌĞ͕��ŶŶĂ��ŽůůŝŶƐ͕��ĞŶũĂŵŝŶ�<ƌĂƌƵƉ͕�^ĞŶŬĂ�<ƌŝǀŝĐ͕��ĂŶŝĞůĞ�DĂŐĂǌǌĞŶŝ͕��ĂǀŝĚ�^ŵŝƚŚ

ϭϬϰ

sĂƌŝĞƚŝĞƐ�ŽĨ��ǆƉůĂŝŶĂďůĞ��ŐĞŶĐǇ
WĂƚ�>ĂŶŐůĞǇ

ϭϭϯ

tŚǇ��ĂŶ͛ƚ�zŽƵ��Ž�dŚĂƚ�,�>͍��ǆƉůĂŝŶŝŶŐ�hŶƐŽůǀĂďŝůŝƚǇ�ŽĨ�WůĂŶŶŝŶŐ�dĂƐŬƐ
^ĂƌĂƚŚ�^ƌĞĞĚŚĂƌĂŶ͕�^ŝĚĚŚĂƌƚŚ�^ƌŝǀĂƐƚĂǀĂ͕��ĂǀŝĚ�^ŵŝƚŚ͕�^ƵďďĂƌĂŽ�<ĂŵďŚĂŵƉĂƚŝ

ϭϭϴ

;,ŽǁͿ��ĂŶ��/��ŽƚƐ�>ŝĞ͍
dĂƚŚĂŐĂƚĂ��ŚĂŬƌĂďŽƌƚŝ͕�^ƵďďĂƌĂŽ�<ĂŵďŚĂŵƉĂƚŝ

ϭϮϳ

��WƌĞůŝŵŝŶĂƌǇ >ŽŐŝĐͲďĂƐĞĚ��ƉƉƌŽĂĐŚ�ĨŽƌ��ǆƉůĂŶĂƚŝŽŶ�'ĞŶĞƌĂƚŝŽŶ
^ƚǇůŝĂŶŽƐ�>ŽƵŬĂƐ�sĂƐŝůĞŝŽƵ͕�tŝůůŝĂŵ�zĞŽŚ͕�dƌĂŶ��ĂŽ�^ŽŶ

ϭϯϮ

�ŽŵďŝŶŝŶŐ��ŽŐŶŝƚŝǀĞ�ĂŶĚ��ĨĨĞĐƚŝǀĞ�DĞĂƐƵƌĞƐ�ǁŝƚŚ��ƉŝƐƚĞŵŝĐ�WůĂŶŶŝŶŐ�ĨŽƌ��ǆƉůĂŶĂƚŝŽŶ�'ĞŶĞƌĂƚŝŽŶ
ZŽŶĂůĚ�W͘ ��͘�WĞƚƌŝĐŬ͕�^ĂƌĂ��ĂůǌĞůͲ:Žď͕�ZŽďŝŶ�>͘�,ŝůů

ϭϰϭ

��'ĞŶĞƌĂů�&ƌĂŵĞǁŽƌŬ�ĨŽƌ�^ǇŶƚŚĞƐŝǌŝŶŐ�ĂŶĚ��ǆĞĐƵƚŝŶŐ�^ĞůĨͲ�ǆƉůĂŝŶŝŶŐ�WůĂŶƐ�ĨŽƌ�,ƵŵĂŶͲ�/�/ŶƚĞƌĂĐƚŝŽŶ
^ĂƌĂƚŚ�^ƌĞĞĚŚĂƌĂŶ͕�dĂƚŚĂŐĂƚĂ��ŚĂŬƌĂďŽƌƚŝ͕��ŚƌŝƐƚŝĂŶ�DƵŝƐĞ͕�^ƵďďĂƌĂŽ�<ĂŵďŚĂŵƉĂƚŝ

ϭϰϲ

�ĂǇĞƐŝĂŶ�/ŶĨĞƌĞŶĐĞ�ŽĨ�dĞŵƉŽƌĂů�^ƉĞĐŝĨŝĐĂƚŝŽŶƐ�ƚŽ��ǆƉůĂŝŶ�,Žǁ�WůĂŶƐ��ŝĨĨĞƌ
:ŽƐĞƉŚ�<ŝŵ͕��ŚƌŝƐƚŝĂŶ�DƵŝƐĞ͕��ŶŬŝƚ�^ŚĂŚ͕�^ŚƵďŚĂŵ��ŐĂƌǁĂů͕�:ƵůŝĞ�^ŚĂŚ

ŶͬĂ

,QYLWHG 6SHDNHU�
5REHUW 5� +RIIPDQ� ,QVWLWXWH IRU +XPDQ DQG 0DFKLQH &RJQLWLRQ

0DFURFRJQLWLRQ�)RXQGDWLRQV IRU 3ODQQLQJ DQG ([SODQDWLRQ

0DFURFRJQLWLRQ LV KRZ FRJQLWLRQ DGDSWV WR FRPSOH[LW\� 7KH KLVWRULFDO URRWV RI
PDFURFRJQLWLRQ UHDFK EDFN WR WKH ODWH ����V� DQG WKH HVVHQWLDOV RI WKH
SDUDGLJP KDYH EHHQ IDLUO\ ZHOO VSHFLILHG�

7KH PRGHOV RI VHQVHPDNLQJ� IOH[HFXWLRQ� FRRUGLQDWLRQ� UH�OHDUQLQJ� DQG
PHQWDO SURMHFWLRQ KHOS FODULI\ GLIIHUHQFHV EHWZHHQ PDFURFRJQLWLYH DQG
PLFURFRJQLWLYH DSSURDFKHV� 0LFURFRJQLWLYH PRGHOV DUH EDVHG RQ FDXVDO
FKDLQV KDYLQJ GLVWLQFW VWDUW DQG VWRS �RU LQSXW�RXWSXW� SRLQWV� 2Q WKH RWKHU
KDQG� PDFURFRJQLWLYH PRGHOV DUH F\FOLFDO DQG FORVHG�ORRS� 0LFURFRJQLWLYH
PRGHOV DUH XVHIXO LQ KLQGVLJKW� WR WHOO VWRULHV� PDFURFRJQLWLYH PRGHOV DUH
WUDQVFHQGHQW DQG DQWLFLSDWRU\�

7KH SULPDU\ PDFURFRJQLWLYH IXQFWLRQV FRUUHVSRQG ZLWK WKH �)DPLOLHV RI /DZV
RI &RPSOH[&RJQLWLYH 6\VWHPV� GHYHORSHG E\ 'DYLG :RRGV� 7KH)DPLOLHV DUH
EDVHG RQ ILYH IXQGDPHQWDO ERXQGV RQ FRPSOH[KXPDQ�PDFKLQH ZRUN
V\VWHPV� 1RWHZRUWK\ DVSHFWV RI PDFURFRJQLWLRQ DUH SHUWLQHQW WR SODQQLQJ
V\VWHPV WHFKQRORJ\�

�)OH[HFXWLRQ HPSKDVL]HV WKH IDFW WKDW JRDOV PRUSK HYHQ DV WKH\ DUH
EHLQJ SXUVXHG�

� 5H�JURXQGLQJ HPEUDFHV WKH IDFW WKDW SODQQLQJ DQG SODQ H[HFXWLRQ DUH
WHDP DFWLYLWLHV�

� 3URMHFWLRQ HODERUDWHV RQ KRZ SODQQLQJ LV DQWLFLSDWRU\�

7KHVH PDFURFRJQLWLYH FRQFHSWV DQG PRGHOV KDYH LPSOLFDWLRQV IRU ([SODLQDEOH
$, �;$,� V\VWHPV� ,I ZH SUHVHQW WR D XVHU DQ $, SODQQLQJ V\VWHP WKDW H[SODLQV
KRZ LW ZRUNV� KRZ GR ZH NQRZ ZKHWKHU WKH H[SODQDWLRQ ZRUNV DQG WKH XVHU
KDV PDGH VHQVH RI WKH $, DQG LV DEOH WR IOH[HFXWH ZLWK LW" ,Q RWKHU ZRUGV� KRZ
GR ZH NQRZ WKDW DQ ;$, V\VWHP LV DQ\ JRRG" .H\ FRQFHSWV RI PHDVXUHPHQW
LQFOXGH VSHFLILF PHWKRGV IRU HYDOXDWLQJ� ��� WKH JRRGQHVV RI H[SODQDWLRQV� ���
ZKHWKHU XVHUV DUH VDWLVILHG E\ H[SODQDWLRQV� ��� KRZ ZHOO XVHUV XQGHUVWDQG
WKH $, V\VWHPV� ��� KRZ FXULRVLW\ PRWLYDWHV WKH VHDUFK IRU H[SODQDWLRQV� ���
ZKHWKHU WKH XVHU
V WUXVW DQG UHOLDQFH RQ WKH $, DUH DSSURSULDWH� DQG ILQDOO\�
��� KRZ ZHOO WKH KXPDQ�;$, ZRUN V\VWHP SHUIRUPV�

Branching-Bounded Contingent Planning via Belief Space Search

Kevin McAreavey1 and Kim Bauters1 and Weiru Liu1 and Jun Hong2

1University of Bristol, UK
{kevin.mcareavey, kim.bauters, weiru.liu}@bristol.ac.uk

2University of the West of England, UK
jun.hong@uwe.ac.uk

Abstract

A contingent plan can be encoded as a rooted graph where
branching occurs due to sensing. In many applications it is
desirable to limit this branching; either to reduce the com-
plexity of the plan (e.g. for subsequent execution by a hu-
man), or because sensing itself is deemed to be too expensive.
This leads to an established planning problem that we refer to
as branching-bounded contingent planning. In this paper, we
formalise solutions to such problems in the context of his-
tory-, and belief-based policies: under noisy sensing, these
policies exhibit differing notions of sensor actions. We also
propose a new algorithm, called BAO*, that is able to find op-
timal solutions via belief space search. This work subsumes
both conformant and contingent planning frameworks, and
represents the first practical treatment of branching-bounded
contingent planning that is valid under partial observability.

1 Introduction
In planning under uncertainty, a contingent plan is the most
general solution form. A typical encoding of a contingent
plan is a rooted graph (or tree) that exhibits branching. This
branching occurs because a contingent plan must account
for all possible feedback that might be received during plan
execution in response to sensing. However, in many ap-
plications it is desirable to limit this branching; either to
reduce the complexity of the plan, or because sensing it-
self is deemed to be too expensive. This leads to an estab-
lished planning problem (Baral, Kreinovich, and Trejo 2000;
Meuleau and Smith 2002; Bonet 2010) that we will refer to
as branching-bounded contingent planning.1

Our intuition is that there exists a positive correlation be-
tween the complexity of a contingent plan (e.g. how dif-
ficult it is for a human to comprehend or execute), and
the amount of branching that it contains. Conversely, stud-
ies have shown that humans are demonstrably bad at fol-
lowing complex plans (Dodson et al. 2013). In this sense,
branching-bounded contingent planning provides a means to
ensure that plans are sufficiently simple so as to be under-
stood by humans. This idea has previously been referred to
as the “cognitive simplicity” of a plan (Meuleau and Smith

1Also known as limited contingency planning (Meuleau and
Smith 2002). Not to be confused with other forms of planning with
bounded parameters (e.g. see Section 4 for a discussion).

2002), and is an important consideration in numerous ex-
plainable AI planning (XAIP) applications, including where
humans are required to verify plans generated by automated
planners (Meuleau and Smith 2002), and where humans are
required to execute such plans (Green et al. 2011).

Considerations around plan complexity also extend to the
field of autonomous agents. For example, if agents have lim-
ited computational resources, then it may not be feasible to
maintain the agent’s belief state online, which precludes the
direct use of functional plan representations such as belief-
based policies (Kaelbling, Littman, and Cassandra 1998;
Meuleau and Smith 2002). This is true of recent work on
augmenting belief-desire-intention (BDI) agents with auto-
mated planners and reusable plans (Meneguzzi and De Silva
2015), where it is important to limit the complexity of new
plans so as to maintain the agent’s reactiveness: the greater
the amount of branching in the plan, the greater the increase
in the size of the agent’s plan library, and the greater the
computational cost associated with future plan selection.

A related approach to contingent planning is the field of
conformant planning, which deals with domains that are
non-observable (i.e. that have no sensing). Although such
domains are sometimes dismissed as having little practical
interest (Taig and Brafman 2015), a common motivation
for conformant planning is in applications where sensing
is deemed to be too expensive (Domshlak and Hoffmann
2006). This suggests that such applications are not truly
non-observable, but rather that the use of sensing should
be bounded (and potentially avoided altogether). In fact,
branching-bounded contingent planning can be seen as a
generalisation of both conformant and contingent planning.

The only practical treatment of branching-bounded con-
tingent planning appears to be the work of Meuleau and
Smith (2002) in the context of partially observable Markov
decision processes (POMDPs). Informally, their method re-
stricts sensing to a special observe-and-branch action, and
then bounds the number of times that this action will be
included in the solution plan. Unfortunately, the method is
only valid under the assumption of full observability (Bonet
2010), and limits the generality of contingent planning by
prohibiting richer forms of sensing. As far as we are aware,
the only other work on bounded branching has been theo-
retical analyses of the complexity of various planning prob-
lems (Baral, Kreinovich, and Trejo 2000; Bonet 2010).

b
Stage 1
Current

a ∈ A(b)Execute

b′ = T (b, a)Stage 2
Predicted

p ∈ O(a, b′)Observe

b′′ = U(a, b′, p) ⊆ b′Stage 3
Successor

Figure 1: Belief state update procedure.

In this paper, we propose the first practical treatment of
branching-bounded contingent planning that is valid un-
der partial observability. We account for uncertainty over
the initial state, action-effects, and observations. The main
contributions are as follows: (i) we propose a definition
of branching-bounded contingent plans in the context of
history-based policies; (ii) we explore the implications of
bounded branching in the context of belief-based policies;
(iii) we propose a definition of branching-bounded contin-
gent plans as generalised belief-based policies that track
sensing; and (iv) we propose a variant of the AO* search
algorithm for AND/OR graphs, called BAO*, that is able
to find optimal solutions via belief space search. We will
rely on the partially observable non-deterministic (POND)
model of contingent planning, where a belief state is a set
of states, but our ideas can likely extend to other models
(e.g. goal-POMDPs, where a belief state is a probability dis-
tribution over the state space). We focus on offline planning
(i.e. where a complete plan is generated and then executed in
full) and will not consider online planning (i.e. where plan-
ning and plan execution are interleaved).

The remainder of the paper is organised as follows: in
Section 2, we recall preliminaries on contingent planning
and AND/OR graphs; in Section 3, we describe our solution
to branching-bounded contingent planning; in Section 4, we
discuss related work; and, in Section 5, we conclude.

2 Preliminaries
In this section, we recall necessary preliminaries on contin-
gent planning and AND/OR graphs. We rely on some stan-
dard mathematical notation: |S| is the cardinality of set S,
2S is the powerset of S, R+ is the set of positive real num-
bers (0 6∈ R+), and N is the set of natural numbers (0 ∈ N).

2.1 Contingent Planning
A contingent planning domain is a tuple (S,A, P,C, T,O)
where S is a set of states (called the state space) with
B = 2S \{∅} the set of belief states (called the belief space),
A is a set of actions with A(s) ⊆ A the set of applicable ac-
tions in state s ∈ S, P is a set of percepts with ∅P ∈ P the
null percept,C : A→ R+ is a cost function, T : S×A→ B
is a transition function, and O : A×S → 2P \ {∅} is an ob-
servation function. We say that T (resp. O) is deterministic
if T (s, a) (resp. O(a, s)) is a singleton for each s ∈ S and

each a ∈ A, otherwise T (resp. O) is non-deterministic. We
assume that a percept will be observed after every action-
execution (see Figure 1), but if it is possible to observe noth-
ing in state s, then this is encoded simply as the null per-
cept ∅P ∈ O(s). Finally, a contingent planning task is a tu-
ple (M, b1, SG) where M is a contingent planning domain,
b1 ∈ B is an initial belief state, and SG ⊆ S is a goal. We
say that a belief state b ∈ B satisfies the goal iff b ⊆ SG, i.e.
when the agent is guaranteed to be in a goal state.

The notion of applicable actions is extended to a belief
state b ∈ B as A(b) = A(s1) ∩ · · · ∩ A(sn) such that b =
{s1, . . . , sn}, meaning that an action is applicable in b iff it
is applicable in each state s ∈ b.2 The transition function
T is extended as a function T : B × A → B defined as
T (b, a) = {s ∈ T (s′, a) | s′ ∈ b}. The observation function
O is extended as a function O : A×B → 2P \ {∅} defined
as O(a, b) = {p ∈ O(a, s) | s ∈ b}. Finally, an update
function U : A×B × P → B is defined as:

U(a, b, p) =

{
{s ∈ b | p ∈ O(a, s)} if non-empty
undefined otherwise

Evidently, U(a, b, p) = undefined iff p 6∈ O(a, b). We say
that b′ = T (b, a) is a predicted belief state and U(a, b′, p) ⊆
b′ is a successor belief state (again, see Figure 1).

In practice, contingent planning problems typically re-
quire a factorised representation in order to express prob-
lems of any meaningful complexity. For example, S can be
defined by a set of (independent) state variables, A(s) (resp.
T and O) can be defined by a set of action schema precon-
ditions (resp. effects and observations) associated with A,
and b1 (resp. SG) can be defined by a logical formula over
the set of state variables. We refer the interested reader to
a planning language capable of expressing contingent plan-
ning problems, such as NuPDDL3 or PO-PPDDL4.

2.2 AND/OR Graphs
A (directed) graph is a tuple (N,E) where N is a set of
nodes and E ⊆ N ×N is a set of (directed) edges. A multi-
graph is a tuple (N, I,E′) where I is a set of identifiers and
E′ ⊆ N × I × N is a set of multiedges such that for each
i ∈ I we have that (N, {(n, n′) | (n, i, n′) ∈ E′}) is a
graph. Given nodes n, n′ ∈ N in a multigraph, then n is said
to be a parent of n′ (resp. n′ is a child of n) iff (n, i, n′) ∈ E′
for some i ∈ I . A node n ∈ N is said to be a branch point if
n has more than one child. Given nodes n1, nm+1 ∈ N in a
multigraph, then a sequence of nodes and identifiers (n1, i1,
. . . , nm, im, nm+1) is a path from n1 to nm+1 iff each nj is
unique and (nj , ij , nj+1) ∈ E′ for j = 1, . . . ,m. A multi-
graph is acyclic if, for each n ∈ N , there does not exist a
path from n to itself. A rooted (and connected) multigraph
is a tuple (N, I,E′, n) where (N, I,E′) is a multigraph and
n ∈ N is a root node such that, for each n′ ∈ N , there exists
a path from n to n′.

2This is the cautious approach to applicable actions; its dual
A(s1) ∪ · · · ∪A(sn) is possible but complicates later definitions.

3http://mbp.fbk.eu/NuPDDL.html
4http://users.cecs.anu.edu.au/∼ssanner/IPPC 2011

n1

n2

n3 n4

n5 n6 n7

n8 n9 n10

n ∈ N∨
n ∈ N∧
solved(n)

Figure 2: AND/OR graph.

An AND/OR graph (N∨ ∪ N∧, I∨ ∪ I∧, E∨ ∪ E∧, n) is
a rooted multigraph where N∨ (resp. N∧) is a set of OR-
nodes (resp. AND-nodes), I∨ (resp. I∧) is a set of OR-
identifiers (resp. AND-identifiers), E∨ ⊆ N∨ × I∨ × N∧
(resp. E∧ ⊆ N∧ × I∧ × N∨) is a set of OR-edges (resp.
AND-edges), and n ∈ N∨ is a root node. An AND/OR
graph is typically used to reduce problems into decompos-
able sub-problems. Intuitively, an AND-node is a solution if
each of its child nodes is a solution, while an OR-node is a
solution if it is a primitive solution, or at least one of its child
nodes is a solution (e.g. see Figure 2). In the next section, we
will demonstrate how branching-bounded contingent plan-
ning can be cast as a search problem over AND/OR graphs.

3 Framework
In this section, we formalise branching-bounded contingent
planning in the context of history-, and belief-based policies,
and propose a new solution that relies on belief space search.

3.1 History-Based Policies
An execution is a possibly infinite sequence (a1, p1, a2, p2,
. . .) where ai ∈ A and pi ∈ P . A finite execution is also
called a history, withH the set of histories (called the history
space). The length of history hi+1 = (a1, p1, . . . , ai, pi) is
defined as |hi+1| = i. A history-based policy is a function
πh : H ′ → A where H ′ ⊆ H . The executions that are pos-
sible with respect to b1 and πh are defined inductively along
with their associated belief states as follows: the empty exe-
cution h1 is possible and b1 is its belief state; if hi is possible
and bi is its belief state, then hi+1 = (hi, ai, pi) is possi-
ble and bi+1 = U(ai, b

′
i, pi) is its belief state iff hi ∈ H ′

such that ai = πh(hi), pi ∈ O(ai, b
′
i), and b′i = T (bi, ai)

. An execution h that is possible with respect to b1 and πh
is said to be complete if h 6∈ H ′ or if h is infinite. Finally,
πh is said to be a strong solution to a contingent planning
task (M, b1, SG) if each complete execution hi is finite and
bi ⊆ SG.
Definition 1. A history-based contingent plan is a history-
based policy πh that is a strong solution to a contingent
planning task (M, b1, SG).

A history-based policy πh can be encoded as a rooted
acyclic multigraph over histories (called a history-based pol-

a1

a2 a3 a4

a5 a6 a7 a8

p1 p2 p3

p4 p5 p6 p7

a ∈ AO(b)

Figure 3: History-based k-branching-bounded plan, k ≥ 2.

icy graph) where πh is a node label function and where each
multiedge identifier is a percept (Kaelbling, Littman, and
Cassandra 1998).5 More precisely, a history-based policy
graph is a rooted tree. To execute the plan, an agent simply
needs to execute the actions specified by node labels, while
tracing a single path in line with observed percepts. In this
way, branch points are those nodes where no single percept
is guaranteed to occur after executing the specified action,
while the actions themselves can be thought of as informa-
tion gathering actions, called sensor actions.

Definition 2. The set of history-based sensor actions in be-
lief state b ∈ B, denoted AO(b), is defined as:

AO(b) = {a ∈ A(b) | b′ = T (b, a),

∃p, p′ ∈ O(a, b′), p 6= p′}

Definition 3. The number of history-based sensor actions in
execution h, denoted ΨO(h), is defined as:

ΨO(h) = |{i = 1, 2, · · · | ai ∈ AO(bi)}|

where h = (a1, p1, a2, p2, . . .).

Definition 4. A history-based contingent plan πh is a
history-based k-branching-bounded contingent plan with
k ∈ N ∪ {∞} iff πh satisfies:

max
h∈H∗

ΨO(h) ≤ k

where H∗ is the set of complete executions of πh.

Definition 4 says that a history-based k-branching-
bounded contingent plan is a history-based contingent plan
where, in the corresponding history-based policy graph,
there is at most k branch points on any path from the root
node to a leaf node (e.g. as in Figure 3). If k = 0 (resp.
k = ∞), then a history-based k-branching-bounded con-
tingent plan is a conformant plan (resp. contingent plan).
This definition is similar to the definition of balanced k-
contingency plans from (Meuleau and Smith 2002). As we
will see in subsequent sections, however, this definition is
too strong in the context of a special type of history-based
policy known as a belief-based policy.

3.2 Belief-Based Policies
A history-based policy πh is called a belief-based policy if
πh(hi) = πh(hj) for any hi, hj ∈ H ′ such that bi = bj
and |hi| = |hj |. For this reason, a belief-based policy can

5An equivalent definition is a rooted acyclic graph over histories
where each edge is labelled with a percept.

be defined as a function π : X → A where X ⊆ B × D
with D ⊆ N the set of time steps. We say that π is sta-
tionary if π(b, t) = π(b, t′) for all t, t′ ∈ D such that
t 6= t′, otherwise π is non-stationary. A stationary belief-
based policy can be defined as a function π : B′ → A
where B′ ⊆ B. Belief-based policies are typically easier to
find than their history-based counterparts: the belief space is
large but bounded, whereas the history space is unbounded.
Analogous to history-based policy graphs, a belief-based
policy can be encoded as a rooted multigraph over (time-
indexed) belief states, called a belief-based policy graph. Im-
portantly, while history-based policies lead to policy graphs
that are trees, belief-based policy graphs can be more com-
pact, since it is possible to arrive at the same node via dif-
ferent executions. In fact, if the policy is stationary, then a
belief-based policy graph may exhibit cycles, because it is
also possible to return to a previously visited node.

The notion of a strong solution for (acyclic) history-based
policies is extended to (potentially cyclic) belief-based poli-
cies through the notion of a strong-cyclic solution (Cimatti et
al. 2003). Intuitively, cycles in a belief-based policy can lead
to infinite executions, but such executions are only permit-
ted when they are unfair. Formally, an infinite execution h is
said to be fair if, when action a is executed an infinite num-
ber of times in belief state b, then every percept p ∈ O(a, b′)
with b′ = T (b, a) is also observed an infinite number of
times, otherwise h is unfair. A belief-based policy π is said
to be a strong-cyclic solution to a contingent planning task
(M, b1, SG) if, for each complete execution hi, either: (i) hi
is finite and bi ⊆ SG, or (ii) hi is infinite and unfair. It fol-
lows that a strong solution is a strong-cyclic solution where
every complete execution is finite.

Definition 5. A belief-based contingent plan is a belief-
based policy π that is a strong-cyclic solution to a contingent
planning task (M, b1, SG).

In the context of history-based policies, branching actions
are those action-executions that can lead to distinct succes-
sor histories (i.e. distinct nodes in the policy graph). How-
ever, the fact that it is possible to arrive at the same (time-
indexed) belief state via different executions suggests that
Definition 2 is not valid in the context of belief-based pol-
icy graphs. Thus, in order to better understand branching in
belief-based policies, let us now explore the relationship be-
tween possible percepts and successor belief states:

Lemma 1. 1 ≤ |{U(a, b, p) | p ∈ O(a, b)}| ≤ |O(a, b)|.

Proof. By definition, O(a, b) ⊆ P such that O(a, b) 6=
∅. Thus, |O(a, b)| ≥ 1. Similarly, if p ∈ O(a, b), then
U(a, b, p) ∈ B, otherwise U(a, b, p) = undefined. Thus,
|{U(a, b, p) | p ∈ O(a, b)}| ≥ 1 and |{U(a, b, p) | p ∈
O(a, b)}| ≤ |O(a, b)|.

Lemma 2. It is guaranteed that |O(a, b)| = |{U(a, b, p) |
p ∈ O(a, b)}| iff O is deterministic.

Proof. Given Lemma 1, we just need to prove (i) that there
exists a bijection (i.e. a one-to-one correspondence) f :

O(a, b) → {U(a, b, p) | p ∈ O(a, b)} when O is deter-
ministic, and (ii) that such a bijection is not guaranteed to
exist when O is non-deterministic.

(i) Suppose O is deterministic. By Definition, O(a, s) is
a singleton for each s ∈ b. Similarly, if s ∈ b and
p ∈ O(a, s), then s ∈ U(a, b, p). Conversely, if s ∈ b
and p 6∈ O(a, s), then s 6∈ U(a, b, p). It follows that, if
O(a, b) = {p1, . . . , pn}, then {f(p1), . . . , f(pn)} forms
a partition6 of b with f(pi) = U(a, b, pi), which satisfies
the definition of a bijection.

(ii) Suppose O is non-deterministic such that O(a, s) = P
for each a ∈ A and each s ∈ b with |P | > 1. By defini-
tion, we have that O(a, b) = P . Moreover, U(a, b, p) = b
for each p ∈ P , since s ∈ U(a, b, p) iff s ∈ b. It follows
that |O(a, b)| > |{U(a, b, p) | p ∈ O(a, b)}| ⇔ |P | >
|{b}|, which contradicts the definition of a bijection.

Corollary 1. U(a, b, p) = b if O(a, b) = {p}.

Proof. This follows from proof (i) of Lemma 2 and the fact
that O(a, b) = {p} is a deterministic observation, regardless
whether O is itself a deterministic function.

Lemma 1 says, firstly, that every action-execution is guar-
anteed to result in at least one possible percept and one suc-
cessor belief state and, secondly, that the number of possible
percepts is an upper bound on the number of possible suc-
cessor belief states. Lemma 2 then says that, if O is deter-
ministic, there exists a unique successor belief state for each
possible percept, but that this is not guaranteed if O is non-
deterministic. Finally, Corollary 1 says that, if there is only
one possible percept (whether p = ∅P or otherwise), then
the (single) successor belief state will be the same as the pre-
dicted belief state. Given these properties, we can now pro-
pose a definition of branching actions in the context belief-
based policies that remains valid for both deterministic and
non-deterministic observations:

Definition 6. The set of belief-based sensor actions in belief
state b ∈ B, denoted AU (b), is defined as:

AU (b) = {a ∈ A(b) | b′ = T (b, a),∃p, p′ ∈ O(a, b′),

U(a, b′, p) 6= U(a, b′, p′)}

Proposition 1. AU (b) ⊆ AO(b).

Proof. By definition, a ∈ AO(b) iff O(a, b′) is not a sin-
gleton with b′ = T (b, a). Conversely, a ∈ AU (b) iff
{U(a, b, p) | p ∈ O(a, b′)} is not a singleton. Thus, it fol-
lows from Lemma 1 that, if a ∈ AU (b), then it must also be
that a ∈ AO(b).

Proposition 2. It is guaranteed that AU (b) = AO(b) iff O
is deterministic.

Proof. This follows directly from Lemma 2 and Proposi-
tion 1, in that a bijection f : O(a, b) → {U(a, b, p) | p ∈
O(a, b)} is guaranteed to exist iff O is deterministic.

6This observation has been made previously (Russell and
Norvig 2009, Chapter 4).

Definition 7. The number of belief-based sensor actions in
execution h, denoted ΨU (h), is defined as:

ΨU (h) = |{i = 1, 2, · · · | ai ∈ AU (bi)}|
where h = (a1, p1, a2, p2, . . .).
Definition 8. A belief-based contingent plan π is a belief-
based k-branching-bounded contingent plan with k ∈ N ∪
{∞} iff π satisfies:

max
h∈H∗

ΨU (h) ≤ k

where H∗ is the set of complete executions of π.
The problem with Definition 8 is that, in the context of

bounded branching, a (time-indexed) belief state is not a suf-
ficient statistic (Striebel 1965) for a history. Specifically, we
know it is possible to arrive at the same (time-indexed) be-
lief state via different executions, but this also means that
those executions may contain different numbers of sensor
actions; this may have implications for the choice of action,
and may even preclude further sensing. For example, sup-
pose there are two executions hi and hj such that bi = bj
and |hi| = |hj |. If Ψ(hi) = k − 1, then the best action (to
reach the goal) in hi might be to execute a sensor action, but
if Ψ(hj) = k, then executing a sensor action in hj is not
an option, although the goal may still be reachable from bj
via some other non-sensor action. This suggests that belief-
based policies (whether stationary or not) are too restrictive
to properly capture bounded branching. In the next section,
we will solve this problem by proposing a generalisation of
belief-based policies, called tracking-based policies.

3.3 Tracking-Based Policies
A history-based policy πh is called a tracking-based policy
with k ∈ N ∪ {∞} if πh satisfies the following: (i) h 6∈ H ′
if ΨU (h) > k; (ii) πh(hi) 6∈ AU (bi) if ΨU (hi) = k;
and (iii) πh(hi) = πh(hj) for any hi, hj ∈ H ′ such that
bi = bj and k−ΨU (hi) = k−ΨU (hj). As such, a tracking-
based policy can be defined as a function πk : X → A
where X ⊆ B × D with D = {t ∈ N | t < k} ∪ {k}
the set of decision steps. Intuitively, a tracking-based pol-
icy generalises a belief-based policy where πk(b, t) denotes
the action to execute in belief state b with t remaining sen-
sor actions.7 This is similar to belief-based policies in fault-
tolerant planning, where actions may depend on the num-
ber of “failures so far” (Domshlak 2013). Conversely, while
non-stationary belief-based policies are typical in finite hori-
zon planning problems (Geffner and Bonet 2013, Chapter 6),
it is worth emphasising that branching-bounded contingent
planning problems do not technically have a finite horizon
(e.g. if k =∞, or if the domain is non-observable).
Definition 9. A tracking-based contingent plan is a
tracking-based policy πh that is a strong-cyclic solution to a
contingent planning task (M, b1, SG).

As with belief-based policies, a tracking-based policy can
be encoded as a rooted multigraph over (step-indexed) be-
lief states, called a tracking-based policy graph. As such,
tracking-based policy graphs are generally more compact
than history-based policy graphs, and may contain cycles.

7Time-dependent tracking-based policies are also possible.

a1

a2 a3

a4 a5

a6 a7

{p1}

{p2}

{p3}

{p4, p5}
{p6}

{p7} {p8, p9}

a ∈ AU (b)

a ∈ AO(b) \AU (b)

Figure 4: Tracking-based k-branching-bounded plan, k ≥ 2.

Proposition 3. Let πk be a tracking-based contingent plan
with H∗ its set of complete executions. Then πk satisfies:

max
h∈H∗

ΨU (h) ≤ k

Proof. By definition, if πk is a tracking-based policy and
ΨU (h) > k, then h 6∈ H ′. If h 6∈ H ′, then by definition
(h, a, p) cannot be a possible execution of πk for any a ∈ A
and any p ∈ P . Conversely, if ΨU (hi) = k and hi ∈ H ′,
then by definition (hi, a, p) cannot be a possible execution of
πk with a = πk(bi, 0) for any p ∈ P if a ∈ AU (bi). Finally,
if h is not a possible execution of πk, then by definition h
cannot be a complete execution of πk. Thus, it must be that
ΨU (h) ≤ k if h is a complete execution of πk.

Definition 10. A tracking-based contingent plan πk is also
called a tracking-based k-branching-bounded contingent
plan.

Proposition 3 says that tracking-based contingent plans
directly encode the intuition of belief-based k-branching-
bounded contingent plans. Once again, Definition 10 is sim-
ilar to balanced k-contingency plans from (Meuleau and
Smith 2002), and if k = 0 (resp. k = ∞), then a tracking-
based k-branching-bounded contingent plan is a conformant
plan (resp. contingent plan). Finally, Figure 4 demonstrates
how tracking-based contingent plans can be less sensitive
to bounded branching than their history-based counterparts
(e.g. the plan is a history-based k-branching-bounded con-
tingent plan iff k ≥ 3).

Theorem 1. It is guaranteed that a tracking-based k-
branching-bounded contingent plan πk is a strong solution
iff k <∞.

Proof. We need to prove: (i) that a strong-cyclic solution
may not be a strong solution when k =∞, and (ii) that every
strong-cyclic solution is also a strong solution if k <∞.

(i) Suppose k = ∞. By definition, πk reduces to a station-
ary belief-based policy π where π(b) = πk(b,∞) for any
(b,∞) ∈ X . Thus, πk may not be a strong solution, since
this is true of any stationary belief-based policy.

(ii) Suppose k < ∞. By definition, if πk(b, t) ∈ AU (b) for
some (b, t) ∈ X , then belief state b can only be revisited
as part of a distinct step-indexed belief state (b, t′) such
that t′ < t. Conversely, if πk(b, t) 6∈ AU (b) for some
(b, t) ∈ X , then (b, t) can only be revisited as part of

an infinite loop with a deterministic sequence of succes-
sor belief states (i.e. no branching) leading back to (b, t).
Infinite loops correspond to fair executions. Thus, there
cannot be an unfair infinite execution of πk, which means
that all complete executions of πk must be finite.

Theorem 1 guarantees that, if k < ∞, then a tracking-
based k-branching-bounded contingent plan will be acyclic.
Combined with our observation that (time-indexed) belief
states are not a sufficient statistic for bounded branch-
ing, this theorem solves an open question about defining
branching-bounded contingent plans in the context of (po-
tentially cyclic) belief-based policies (Bonet 2010). More
importantly, this theorem implies that certain types of algo-
rithms (i.e. those for acyclic plans) may be more convenient
than others for branching-bounded contingent planning.

3.4 Algorithm
In this section, we propose a variant of the AO* optimal
top-down heuristic search algorithm for acyclic AND/OR
graphs (Nilsson 1971, Chapter 3; Martelli and Montanari
1973). AO* itself is the search algorithm employed by nu-
merous existing contingent planners (Bonet and Geffner
2000; Hoffmann and Brafman 2005; Bryce, Kambhampati,
and Smith 2006), where it is typically used to construct opti-
mal history-based policies incrementally (Geffner and Bonet
2013, Chapter 5). However, AO* can also be used to con-
struct optimal acyclic belief-based policies via belief space
search. In a similar way, our algorithm (called Bounded
AO*, or BAO* for short) is able to find optimal history-
and tracking-based k-branching-bounded contingent plans.
BAO* is sound and complete when k < ∞, but may be in-
complete when k =∞where strong-cyclic solutions are not
guaranteed to be strong solutions (see Theorem 1).

We first need to formalise what we mean by optimality.
Let Π be the set of history-based policies. The cost function
C is extended to Π as a function C : Π→ R+ defined as:

C(πh) =

max
h∈H∗

|h|∑
i=1

C(ai) if H∗ 6= ∅

∞ otherwise

where h = (a1, p1, a2, p2, . . .) and H∗ is the set of com-
plete executions of πh. Note that C(πh) = ∞ if πh has an
infinite execution. Of course, if πh is a tracking-based k-
branching-bounded contingent plan with k < ∞, then The-
orem 1 guarantees that all executions will be finite.

Definition 11. Let Π′ ⊆ Π be the set of history- (resp.
tracking-based) k-branching-bounded contingent plans. The
set of optimal history- (resp. tracking-based) k-branching-
bounded contingent plans Π∗ ⊆ Π′ is defined as:

Π∗ = argmin
πh∈Π′

C(πh)

Definition 11 says that an optimal k-branching-bounded
contingent plan minimizes cost in the worst case (that is, the
maximum cost for any complete execution). Next, we can
formalise the search space of BAO* as follows:

b1, k

a1, b2, k a2, b3, k

b4, k − 1 b5, k − 1 b6, k − 1

a1 a2

p1 p2 p3 p4

dead(n)
¬explored(n)
solved(n)

Figure 5: BAO* search graph.

Definition 12. A belief space search graph is an acyclic
AND/OR graph (N∨∪N∧, A∪P,E∨∪E∧, n) whereN∨ ⊆
X ,N∧ ⊆ A×X ,E∨ ⊆ N∨×A×N∧,E∧ ⊆ N∧×P×N∨,
and n ∈ N∨ is the root node.

Intuitively, nodes in a belief space search graph are (step-
indexed) belief states such that OR-edges link belief states
via actions, and AND-edges link belief states via percepts
(see Figure 5). The step-index in each node provides the
mechanism by which we track the number of sensor actions
on a given path. Notice also that AND-nodes are further aug-
mented with an action. The reason for this follows from the
fact that the set of possible percepts for a given belief state
depends on the action that lead to that belief state, and thus
it is necessary to track those actions.

Before describing BAO* in detail, let us introduce the
notion of a heuristic function in the context of BAO*. Let
V : N∨ ∪ N∧ → R+ ∪ {∞} be a heuristic function. We
say that V is admissible if it never overestimates the cost
(with respect to cost function C) of reaching the goal. A bi-
nary relation over nodes, denoted �V , is defined for nodes
n, n′ ∈ N∨ ∪N∧ as follows:

n �V n′ ⇔ V (n) ≤ V (n′)

Moreover, n 'V n′ if n �V n′ and n′ �V n. Also, n ≺V n′

if n �V n′ and n′ 6�V n. Finally, min(N,�V) denotes the
single most preferred node in N ⊆ N∨∪N∧ with respect to
V , with ties broken arbitrarily. As input, BAO* takes a con-
tingent planning task (M, b1, SG), an admissible heuristic
function V ∗, and a bound k ∈ N∪{∞}. Importantly, the ad-
missible heuristic function V ∗ should satisfy the following:
V ∗(b, t) = V ∗(b, t′) for all t, t′ ∈ D; V ∗(a, b, t) = V ∗(b, t)
for each a ∈ A; and V ∗(a, b, t) = V ∗(a′, b, t′) for all
a, a′ ∈ A and all t, t′ ∈ D. In other words, V ∗ is inde-
pendent of the step-index and action.

An outline of BAO* is provided in Algorithm 1, and sup-
plementary definitions (which are identical to AO*) are pro-
vided in Table 1. In particular, Table 1b describes how an-
other heuristic function V is derived from the cost function
C and the input heuristic function V ∗. The heuristic func-
tion V represents a revised cost estimate and is computed
by BAO* during the search. Therefore, V is the heuristic
function that actually guides the search, and is admissible if
V ∗ is admissible. Of course, AO* does not typically com-
pute V at each step; instead it maintains a single heuristic
value for each node, which it then updates during the search
via a back-propagation procedure. We omit these details for
conciseness. The main changes to AO* can be found in Al-
gorithm 1, and relate to the tracking of sensor actions on a

Algorithm 1: BAO*
Input: Contingent planning task (M, b1, SG), admissible

heuristic V ∗, bound k ∈ N ∪ {∞}
Output: πk = extract(root)

1 root← (b1, k)
2 while ¬solved(root) ∧ V (root) 6=∞ do
3 leaf← choose(root)
4 expand(leaf)

5 return extract(root)
6 function choose(n) /* OR-node */
7 if ¬expanded(n) then
8 return n
9 n′ ← min({n′′′ | (n, a, n′′′) ∈ E∨},�V)

10 N ′∨ ← {n′′′ | (n′, p, n′′′) ∈ E∧,¬solved(n′′′)}
11 n′′ ← min(N ′∨,�V)
12 return choose(n′′)

13 procedure expand(n) /* OR-node */
14 (b, t)← n
15 for each a ∈ A(b) do
16 b′ ← T (b, a)
17 n′ ← (a, b′, t)
18 if ¬path(n′, n) then
19 E′∧ ← expand(n′)
20 if E′∧ 6= ∅ then
21 E∨ ← E∨ ∪ {(n, a, n′)}
22 E∧ ← E∧ ∪ E′∧

23 function expand(n) /* AND-node */
24 (a, b, t)← n
25 X ← ∅
26 for each p ∈ O(a, b) do
27 b′ ← U(a, b, p)
28 X ← X ∪ {(p, b′)}
29 if |{b′ | (p, b′) ∈ X}| > 1 then
30 if t = 0 then
31 return ∅
32 t← t− 1

33 E′∧ ← ∅
34 for each (p, b′) ∈ X do
35 n′ ← (b′, t)
36 if path(n′, n) then
37 return ∅
38 E′∧ ← E′∧ ∪ {(n, p, n′)}
39 return E′∧

given path, as well as the avoidance of cycles. We can sum-
marise the algorithm as follows:

Lines 3–4 In each iteration, we select an OR-node n =
(b, t) for expansion in the current best partial solution.

Lines 14–16 For each applicable action a ∈ A(b), we gen-
erate the predicted belief state b′ = T (b, a).

Lines 17–19, 24–28 If possible to add an OR-edge from n
to AND-node n′ = (a, b′, t) without creating a cycle, then
for each possible percept p ∈ O(a, b) we generate the
successor belief state b′′ = U(a, b′, p).

Predicate Value

expanded(n) true after execution of expand(n), oth-
erwise false

path(n, n′) true if there is a path from n to n′ in the
current belief space search graph, other-
wise false

goal(n) true if n ∈ N∨ and b ⊆ SG with n =
(i, b), otherwise false

dead(n) true if expanded(n) and n has no chil-
dren, otherwise false

solved(n) true if goal(n), or n ∈ N∨ and
solved(n′) for some child n′ of n, or
n ∈ N∧ and solved(n′) for each child
n′ of n, otherwise false

(a) Predicates in BAO*.

V (n) Condition

0 If goal(n)
∞ If dead(n)
min
n′∈N

C(a) + V (n′) If n ∈ N∨ and expanded(n) such
that N is the set of children of n and
n′ = (a, b)

max
n′∈N

V (n′) If n ∈ N∧ and expanded(n) such
that N is the set of children of n

V ∗(n) Otherwise

(b) Heuristic function V in BAO*.

Table 1: Supplementary details for BAO*.

Lines 29–32 We record the remaining number of sensor ac-
tions as t′ = t− 1 if a ∈ AU (b), or t′ = t otherwise.

Lines 33–39, 20–22 If possible to add an AND-edge from
n′ to OR-node n′′ = (b′′, t′) without creating a cycle, then
we add n′ as a child of n and each n′′ as a child of n′.

Line 2 The search terminates when the root node is solved,
or is deemed to be unsolvable via V (n) =∞.

Line 5 A tracking-based k-branching-bounded contingent
plan is returned, if found, via extract(n).

Notice that a negative result at line 18 or line 36 does not
mean that no solution exists from n involving n′ or n′′, but
simply that no acyclic solution exists (Russell and Norvig
2009, Chapter 4). Specifically, the admissible heuristic func-
tion V in (B)AO* ensures that, if n′ or n′′ are part of the
optimal solution, then they will be part of the solution at the
point that they were originally expanded. Of course, while
Definition 12 and Algorithm 1 focus on tracking-based poli-
cies, a simpler variant (i.e. tree-based search, omitted due to
space considerations) can also be used to incrementally con-
struct history-based k-branching-bounded contingent plans.

4 Related Work
The only other practical treatment of branching-bounded
contingent planning appears to be the work of Meuleau and
Smith (2002), whose method is known to be valid only un-
der full observability (Bonet 2010). Thus, our work rep-
resents the first practical treatment of this problem that

is valid in the general case (i.e. partial observability). As
far as we are aware, the only other work that deals with
branching-bounded contingent plans has been theoretical
analyses of computational complexity in planning (Baral,
Kreinovich, and Trejo 2000; Bonet 2010). Bounded branch-
ing is a subclass of the broader problem of planning with
bounded parameters. In this broader class, finite-horizon
planning is perhaps the best known instance, requiring that
plans have some bounded execution length (e.g. Rintanen
2007). Another example is conformant probabilistic plan-
ning, where satisficing plans guarantee some lower bound
on the probability of goal achievement under an indefinite
horizon (Domshlak and Hoffmann 2006). In fault-tolerant
planning, partial plans are permitted under the assumption
that only a bounded number of non-primary effects will
occur during execution (Domshlak 2013). Recent work on
compact plans requires that π(·) be defined only for some
bounded number of controller states (Geffner and Geffner
2018) or memory states (Chatterjee, Chmelı́k, and Davies
2018; Pandey and Rintanen 2018). Of course, while all
these works belong to the broad class of bounded plan-
ning problems, they do not share the same characteristics as
branching-bounded contingent planning: they do not reduce
branching, and do not generalise conformant planning.

Contingent planners that rely on belief space search can
be classified in terms of: (i) their underlying search al-
gorithm for AND/OR graphs; (ii) their belief state repre-
sentation; and (iii) their heuristics. Our method is agnostic
to (ii) and (iii). The best-known algorithm for (i) is prob-
ably AO* (Nilsson 1971, Chapter 3; Martelli and Mon-
tanari 1973), but other examples include LAO* (Hansen
and Zilberstein 2001), LDFS (Bonet and Geffner 2005),
and A*LD (Felzenszwalb and McAllester 2007). Contingent
planners based on AO* include GPT (Bonet and Geffner
2000), Contingent-FF (Hoffmann and Brafman 2005), and
POND (Bryce, Kambhampati, and Smith 2006). To the best
of our knowledge, belief space search remains state-of-the-
art in general8 contingent planning (e.g. Contingent-FF can
be regarded as state-of-the-art). That being said, alterna-
tive techniques include plan space search (Weld, Anderson,
and Smith 1998), answer set programming (Tu, Son, and
Baral 2007), and compilation (Muise, Belle, and McIlraith
2014). We expect that branching-bounded contingent plan-
ning could be achieved with many of these techniques.

5 Conclusion
An implementation of this work is available online.9 From a
practical perspective, we hope to further develop this im-
plementation into a planner that is competitive with (but
subsumes) existing state-of-the-art conformant and contin-
gent planners. This could be achieved, for example, by the
use of better heuristics (Bryce, Kambhampati, and Smith
2006), or compact belief state representations (Darwiche
2011). Subsequently, we hope to experimentally validate
this work using benchmarks that permit different types of

8That is, where there range of solvable problems is not re-
stricted a priori by the underlying planning technique.

9https://github.com/kevinmcareavey/bcp

branching-bounded contingent plans (e.g. conformant and
non-conformant plans). Finally, it is worth mentioning that
this work was motivated by an XAIP application involving
the recommendation of plans for execution by humans, so
it would be interesting to evaluate the effect of bounded
branching on human comprehension.

From a theoretical perspective, there are many interest-
ing directions for future work. For example, we have de-
fined branching-bounded contingent plans in terms of a lo-
cal bound (i.e. where branching is bound only on complete
paths of the policy graph), but a global bound may also be
desirable (i.e. where branching is bound across the entire
policy graph). The latter would be comparable to the notion
of a general k-contingency plans from (Meuleau and Smith
2002). Such plans might be found by maintaining an explicit
partial solution during the search, then discarding when the
bound is exceeded. However, this would likely complicate
backtracking. Another example is that, while we bound the
number of branch points, we do not bound the number of
branches (i.e. child nodes). Doing so could help to further
reduce the complexity of the plan. Finding complete plans
would certainly require an online partitioning of O(a, b)
such that successor belief states could be defined for sets of
percepts in that partition, e.g. whereU(a, b, {p1, . . . , pn}) =
U(a, b, p1) ∪ . . . ∪ U(a, b, pn). However, optimally choos-
ing that partition is not straightfoward, and there would be
no guarantees on the optimality of the resulting plan. As
an alternative, fault-tolerant planning techniques (Domshlak
2013) could be used to find partial plans that only account
for a bounded number of “most significant” branches.

Acknowledgements
This work received funding from the European Union’s
Horizon 2020 research and innovation programme, through
the DEVELOP project, under grant agreement No. 688127.

References
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. Artificial Intelligence
122(1-2):241–267.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the 5th International Conference on Artificial Intelli-
gence Planning Systems (AIPS’00), 52–61.
Bonet, B., and Geffner, H. 2005. An algorithm better than
AO*? In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI’05), 1343–1348.
Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artificial Intelligence 174(3-4):245–269.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. Journal of Ar-
tificial Intelligence Research 26:35–99.
Chatterjee, K.; Chmelı́k, M.; and Davies, J. 2018. A
symbolic SAT-based algorithm for almost-sure reachability
with small strategies in POMDPs. In Proceedings of the

30th AAAI Conference on Artificial Intelligence (AAAI’16),
3225–3232.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1-2):35–84.

Darwiche, A. 2011. SDD: A new canonical representation of
propositional knowledge bases. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI’11), 819–826.

Dodson, T.; Mattei, N.; Guerin, J. T.; and Goldsmith, J.
2013. An English-language argumentation interface for ex-
planation generation with Markov decision processes in the
domain of academic advising. ACM Transactions on Inter-
active Intelligent Systems 3(3):18:1–30.

Domshlak, C., and Hoffmann, J. 2006. Fast probabilistic
planning through weighted model counting. In Proceedings
of the 16th International Conference on Automated Planning
and Scheduling (ICAPS’06), 243–252.

Domshlak, C. 2013. Fault tolerant planning: Complex-
ity and compilation. In Proceedings of the 23th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13), 64–72.

Felzenszwalb, P. F., and McAllester, D. 2007. The gen-
eralized A* architecture. Journal of Artificial Intelligence
Research 29:153–190.

Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.

Geffner, T., and Geffner, H. 2018. Compact policies for
fully-observable non-deterministic planning as SAT. In Pro-
ceedings of the 28th International Conference on Automated
Planning and Scheduling (ICAPS’18), 88–96.

Green, D. T.; Walsh, T. J.; Cohen, P. R.; and Chang, Y.-
H. 2011. Learning a skill-teaching curriculum with dy-
namic Bayes nets. In Proceedings of the 23rd Conference on
Innovative Applications of Artificial Intelligence (IAAI’11),
1648–1654.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.

Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proceedings of the 15th International Conference on Auto-
mated Planning and Scheduling (ICAPS’05), 71–88.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.

Martelli, A., and Montanari, U. 1973. Additive AND/OR
graphs. In Proceedings of the 3rd International Joint Con-
ference on Artificial Intelligence (IJCAI’73), 1–11.

Meneguzzi, F., and De Silva, L. 2015. Planning in BDI
agents: a survey of the integration of planning algorithms
and agent reasoning. The Knowledge Engineering Review
30(1):1–44.

Meuleau, N., and Smith, D. E. 2002. Optimal limited con-
tingency planning. In Proceedings of the 19th Conference
on Uncertainty in Artificial Intelligence (UAI’02), 417–426.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI’14), 2322–2329.
Nilsson, N. J. 1971. Problem-Solving Methods in Artificial
Intelligence. McGraw-Hill.
Pandey, B., and Rintanen, J. 2018. Planning for partial ob-
servability by SAT and graph constraints. In Proceedings of
the 28th International Conference on Automated Planning
and Scheduling (ICAPS’18), 190–198.
Rintanen, J. 2007. Asymptotically optimal encodings
of conformant planning in QBF. In Proceedings of the
22nd AAAI Conference on Artificial Intelligence (AAAI’07),
1045–1050.
Russell, S. J., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall, 3rd edition.
Striebel, C. 1965. Sufficient statistics in the optimum control
of stochastic systems. Journal of Mathematical Analysis and
Applications 12(3):576–592.
Taig, R., and Brafman, R. I. 2015. A compilation based ap-
proach to conformant probabilistic planning with stochastic
actions. In Proceedings of the 25th International Confer-
ence on Automated Planning and Scheduling (ICAPS’15),
220–224.
Tu, P. H.; Son, T. C.; and Baral, C. 2007. Reasoning and
planning with sensing actions, incomplete information, and
static causal laws using answer set programming. Theory
and Practice of Logic Programming 7(4):377–450.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998. Ex-
tending graphplan to handle uncertainty and sensing actions.
In Proceedings of the 10th National Conference on Artificial
Intelligence (AAAI’98), 897–904.

Robust Goal Recognition with Operator-Counting Heuristics

Felipe Meneguzzi1, André Grahl Pereira2, and Ramon Fraga Pereira1

1Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
2Federal University of Rio Grande do Sul (UFRGS), Brazil
felipe.meneguzzi@pucrs.br, ramon.pereira@edu.pucrs.br

agpereira@inf.ufrgs.br

Abstract
Goal recognition is the problem of inferring the correct goal
towards which an agent executes a plan, given a set of goal
hypotheses, a domain model, and a (possibly noisy) sam-
ple of the plan being executed. This is a key problem in
both cooperative and competitive agent interactions and re-
cent approaches have produced fast and accurate goal recog-
nition algorithms. In this paper, we leverage advances in
operator-counting heuristics computed using linear programs
over constraints derived from classical planning problems to
solve goal recognition problems. Our approach uses addi-
tional operator-counting constraints derived from the obser-
vations to efficiently infer the correct goal, and serves as basis
for a number of further methods with additional constraints.

Introduction
Agents that act autonomously on behalf of a human user
must choose goals independently of user input and gener-
ate plans to achieve such goals (Meneguzzi 2009). When
such agents have complex sets goals and require interac-
tion with multiple agents that are not under the user’s con-
trol, the resulting plans are likely to be equally complex
and non-obvious for human users to interpret (Chakraborti
et al. 2018). In such environments, the ability to accu-
rately and quickly identify the goals and plans of all in-
volved agents is key to provide meaningful explanation
for the observed behavior. Goal recognition is the prob-
lem of inferring one or more goals from a set of hypothe-
ses that best account for a sequence of observations, given
a fixed initial state, a goal state, and a behavior model
of the agent under observation. Recent approaches to goal
recognition based on classical planning domains have lever-
aged data-structures and heuristic information used to im-
prove planner efficiency to develop increasingly accurate
and faster goal recognition algorithms (Martı́n et al. 2015;
Pereira et al. 2017). Specifically, Pereira et al. (2017) use
heuristics based on planning landmarks (Hoffmann et al.
2004) to accurately and efficiently recognize goals in a
wide range of domains with various degrees of observabil-
ity and noise. This approach, however, does not deal with
noise explicitly, relying on the implicit necessity of land-
marks in valid plans for goal hypotheses to achieve com-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

petitive accuracy with other methods (Sohrabi et al. 2016;
Ramı́rez and Geffner 2010), while increasing the number of
recognized goals (spread).

Thus, goal recognition under partial observability (i.e.,
missing observations) in the presence of noisy observation
is a difficult problem to address while achieving both rea-
sonable recognition time (i.e., a few seconds), high accuracy
and low spread. In this paper, we address these limitations
by leveraging recent advances on operator-counting heuris-
tics (Pommerening et al. 2014; van den Briel et al. 2007).
Operator-counting heuristics provide a unifying framework
for a variety of sources of information from planning heuris-
tics (Hoffmann et al. 2004) that provide both an estimate of
the total cost of a goal from any given state and and indica-
tion of the actual operators likely to be in such plans. This
information proves to be effective at differentiating between
goal hypotheses in goal recognition.

Our contributions are threefold. First, we develop three,
increasingly more accurate goal recognition approaches
using operator-counting heuristics.Second, we empirically
show that these heuristics are very effective at goal recogni-
tion, overcoming existing approaches in almost all domains
in terms of accuracy while diminishing the spread of rec-
ognized goals. Such approaches are substantially more ef-
fective for noisy settings. Third, we discuss a broad class
of operator-counting heuristics for goal recognition that can
use additional constraints to provide even finer handling of
noise and missing observations.

Background
We review the key background for the approaches we de-
velop in this paper. First, the recognition settings we as-
sume for our approach follows the standard formalization of
goal recognition as planningSecond, while there is substan-
tial literature on linear programming heuristic unified on the
operator-counting framework, we focus on the specific types
of operator-counting constraints we actually use in our ex-
perimentation.

Planning and Goal Recognition
Planning aims to find a sequence of actions that transforms
an initial state into a goal state. Next, we formally define
each of these elements.

Definition 1 (Predicates and State). A predicate is denoted
by an n-ary predicate symbol p applied to a sequence of zero
or more terms (τ1, τ2, ..., τn) – terms are either constants
or variables. We refer to grounded predicates that repre-
sent logical values according to some interpretation as facts,
which are divided into two types: positive and negated facts,
as well as constants for truth (>) and falsehood (⊥). A state
S is a finite set of positive facts f that follows the closed
world assumption so that if f ∈ S, then f is true in S.
We assume a simple inference relation |= such that S |= f
iff f ∈ S, S 6|= f iff f 6∈ S, and S |= f1 ∧ ... ∧ fn iff
{f1, ..., fn} ⊆ S.

Definition 2 (Operator and Action). An operator a is rep-
resented by a triple 〈name(a), pre(a), eff(a)〉: name(a) rep-
resents the description or signature of a; pre(a) describes
the preconditions of a, a set of predicates that must exist in
the current state for a to be executed; eff(a) represents the
effects of a. These effects are divided into eff(a)+ (i.e., an
add-list of positive predicates) and eff(a)− (i.e., a delete-list
of negated predicates). An action is a ground operator in-
stantiated over its free variables.

Definition 3 (Planning Domain). A planning domain defi-
nition Ξ is represented by a pair 〈Σ,A〉, which specifies the
knowledge of the domain, and consists of a finite set of facts
Σ (e.g., environment properties) and a finite set of actions
A.

Definition 4 (Planning Instance). A planning instance Π is
represented by a triple 〈Ξ, I, G〉, where Ξ = 〈Σ,A〉 is the
domain definition; I ⊆ Σ is the initial state specification,
which is defined by specifying values for all facts in the ini-
tial state; and G ⊆ Σ is the goal state specification, which
represents a desired state to be achieved.

Definition 5 (Plan). An s-plan π for a planning instance
Π = 〈Ξ, I, G〉 is a sequence of actions 〈a1, a2, ..., an〉 that
modifies a state s into a state S |= G in which the goal state
G holds by the successive execution of actions in π starting
from s. An I-plan is just called a plan. A plan π∗ with length
|π∗| is optimal if there exists no other plan π′ for Π such that
|π′| < |π∗|.

A goal recognition problem aims to select the correct goal
of an agent among a set of possible goals using as evidence
a sequence of observations. These observations might be ac-
tions executed by the agent or noise observation which are
part of a valid plan but are not executed by the agent.

Definition 6 (Observation Sequence). An observation se-
quence O = 〈o1, o2, ..., on〉 is said to be satisfied by a plan
π = 〈a1, a2, ..., am〉, if there is a monotonic function f that
maps the observation indices j = 1, ..., n into action indices
i = 1, ..., n, such that af(j) = oj .

Definition 7 (Goal Recognition Problem). A goal recog-
nition problem is a tuple TGR = 〈Ξ, I,G, O〉, where: Ξ =
〈Σ,A〉 is a planning domain definition; I is the initial state;
G is the set of possible goals, which include a correct hidden
goalG∗ (i.e.,G∗ ∈ G); andO = 〈o1, o2, ..., on〉 is an obser-
vation sequence of executed actions, with each observation
oi ∈ A, and the corresponding action being part of a valid

plan π (from Definition 5) that transitions I intoG∗ through
the sequential execution of actions in π.

Definition 8 (Solution to a Goal Recognition Problem). A
solution to a goal recognition problem TGR = 〈Ξ, I,G, O〉
is a nonempty subset of the set of possible goals G ⊆ G
such that ∀G ∈ G there exists a plan πG generated from a
planning instance 〈Ξ, I, G〉 and πG is consistent with O.

Operator-Counting Heuristics
Recent work on linear programming (LP) based heuristics
has generated a number of informative and efficient heuris-
tics for optimal-cost planning (van den Briel et al. 2007;
Pommerening et al. 2014; Bonet 2013). These heuristics rely
on constraints from different sources of information that ev-
ery plan π (Definition 5) must satisfy. All operator-counting
constraints contain variables of the form Ya for each opera-
tor a such that setting Ya to the number of occurrences of a
in π satisfies the constraints. In this paper we adopt the for-
malism and definitions of Pommerening et al. for LP-based
heuristics1.

Definition 9 (Operator-Counting Constraints). Let Π be
a planning instance with operator set A and let s be one
of tis states. Let Y be a set of non-negative real-valued and
integer variables, including an integer variable Ya for each
operator a ∈ A along with any number of additional vari-
ables. The variables Ya are called operator-counting vari-
ables. If π is an s-plan, we denote the number of occurrences
of operator a ∈ A in π with Yπa . A set of linear inequalities
over Y is called an operator counting constraint for s if for
every s-plan there exists a feasible solution with Ya = Yπa
for all a ∈ A. A constraint set for s is a set of operator-
counting constraints for s where the only common variables
between constraints are the operator-counting constraints.

Definition 10 (Operator-Counting Integer-Linear Pro-
gram). The operator-counting integer program IPC for
constraint set C aims to minimise∑

a∈A
cost(a)Ya subject to C

where operator-counting linear program LPC is the LP -
relaxation of IPC .

Definition 11 (IP and LP Heuristic). Let Π be a planning
instance, and let C be a function that maps states s of Π to
constraint sets for s. The IP heuristic hIPC (s) is the objec-
tive value of the integer program IPC(s). The LP heuristic
hLPC (s) is the objective value of the linear program LPC(s).
Infeasible IPs/LPs are treated as having∞ objective value.

While the framework from Pommerening et al. 2013 uni-
fies many types of constraints for operator-counting heuris-
tics, we rely on three types of constraints for our goal recog-
nition approaches: landmarks, state-equations, and post-hoc
optimization. Planning landmarks consist of actions (alter-
natively state-formulas) that must be executed (alternatively

1The only difference between their formalism and ours is that
we refer to operators/actions with an a/A variable name to differ-
entiate it from the observations o/O

made true) in any valid plan for a particular goal (Hoffmann
et al. 2004). Thus, landmarks are necessary conditions for
all valid plans towards a goal, and, as such, provide the basis
for a number of admissible heuristics (Karpas and Domsh-
lak 2009) and as conditions to strengthen existing heuris-
tics (Bonet 2013). Importantly, planning landmarks form the
basis for the current state-of-the-art goal recognition algo-
rithms (Pereira et al. 2017; Pereira and Meneguzzi 2018).
Disjunctive action landmarks (Zhu and Givan 2003) for a
state s are sets of actions such that at least one action in
the set must be true for any s-plan, and make for a natural
operator-counting constraint.
Definition 12 (Landmark Constraints). Let L ⊆ A be a
disjunctive action landmark for state s of task Π. The land-
mark constraint clms,L for L is:∑

a∈L
Ya ≥ 1

Net change constraints generalize Bonet’s (2013) state
equation heuristic, which itself relate the planning instance
in question with Petri nets that represent the transitions of
state variables induced by the actions, and such that tokens
in this task represent net changes to the states of the problem.

Finally, Post-hoc optimization constraints (Pommerening
et al. 2013) use the fact that certain heuristics can rule out the
necessity of certain operators from plans (and thus from the
heuristic estimate). For example, Pattern Database (PDBs)
heuristics (Culberson and Schaeffer 1998) create projections
of the planning task into a subset of state variables (with this
subset being the pattern), such that the heuristic can parti-
tion operators into two sets of each pattern, one that changes
variables in the pattern (i.e., contributes towards transitions)
and the other than does not (i.e., is non-contributing).
Definition 13 (Post-hoc Optimization Constraint). Let Π
be a planning task with operator set A, let h be an admissi-
ble heuristic for Π, and let N ⊆ A be a set of operators that
are noncontributing in that h is still admissible in a modified
planning task where the cost of all operators in N is set to
0.

Then the post-hoc optimization constraint cPHs,h,N for h,N ,
and state s of Π consists of the inequality.∑

a∈A\N

cost(a)Ya ≥ h(s)

Goal Recognition using Operator Counts
We now bring together the operator-counting constraints
into three operator-counting heuristics suitable for goal
recognition, ranging from the simplest way to employ op-
erator counts to compute the overlap between counts and
observed actions, to modifying the constraints used by the
operator counts to enforce solutions that agree with such ob-
servations,and finally accounting for possible noise by com-
paring heuristic values.

Computing Observation Overlap Count
We start with a basic operator-counting heuristic h(s), which
we define to be the LP-heuristic of Def. 11 where C com-

Algorithm 1 Goal Recognition using the Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function OPCOUNTRECOGNIZE(Ξ, I,G, O)
2: Hits ← Initialize empty dictionary
3: for all G ∈ G do . Compute overlap for G
4: HitsG ← 0
5: Y ← GENERATECONSTRAINTS(Ξ, I, G)
6: Y ← COMPUTEOPERATORCOUNTS(Y)
7: for all o ∈ O do
8: if Yo > 0 then
9: HitsG ← HitsG + 1

10: Yo ← Yo − 1
11: return all G s.t G ∈ G ∧HitsG = maxGHitsG

prises the constraints generated by Landmarks (Def. 12),
post-hoc optimization (Def. 13), and net change constraints
as described by Pommerening et al. (2014). This heuristic,
computed following Def. 11, yields two important bits of
information for our first technique, first, it generates the ac-
tual operator counts Ya for all a ∈ A from Def. 10, whose
minimization comprises the objective function h(s).

The heuristic values h(s) of each goal candidate G ∈ G
tells us about the optimal distance between the initial state
I and G, while the operator counts indicate possible oper-
ators in a valid plan from I to G. We can use these counts
to account for the observations O by computing the overlap
between operators with counts greater than one and opera-
tors observed for recognition. Algorithm 1 shows how we
can use the operator counts directly in a goal recognition
technique. In order to rank the goal hypotheses we keep a
dictionary of Hits (Line 2) to store the overlap, or count the
times operators counts hit observed actions. The algorithm
then iterates over all goal hypotheses (Lines 3-10) comput-
ing the operator counts for each hypothesisG and comparing
these counts with the actual observations (Lines 7–10). We
recognize goals by choosing the hypotheses whose operator
counts hit the most observations (Line 11).

Enforcing Observation Constraints
The technique of Algorithm 1 is conceptually similar to the
Goal Completion heuristic of Pereira et al. (2017) in that it
tries to compare heuristically computed information with the
observations. However, this initial approach has a number of
shortcomings in relation to their technique. First, while the
landmarks themselves are enforced by the LP used to com-
pute the operator counts (and thus observations that corre-
spond to landmarks count as hits), the overlap computation
loses the ordering of the landmarks that the Goal Completion
heuristic uses to account for missing observations. Second,
a solution to a set of operator-constraints, i.e., a set of opera-
tors with non-negative counts may not be a feasible plan for
a planning instance. Thus, these counts may not correspond
to the plan that generated the observations.

While operator-counting heuristics on their own are fast
and informative enough to help guide search when dealing
with millions of nodes, goal recognition problems often re-

Algorithm 2 Goal Recognition using Observation-
Constrained Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function OPCOUNTOBSRECOGNIZE(Ξ, I,G, O)
2: for all G ∈ G do . Compute hc(I) for G
3: Y ← GENERATECONSTRAINTS(Ξ, I, G)
4: for all o ∈ O do
5: Y ← Y ∪ (Yo > 1)

6: Y ← COMPUTEOPERATORCOUNTS(Y)
7: HG ←

∑
a∈A Ya

8: return all G s.t G ∈ G ∧HG = minGHG

quire the disambiguation of a dozen or less goal hypothe-
ses. Such goal hypotheses are often very similar so that the
operator-counting heuristic value (i.e., the objective function
over the operator counts) for each goal hypothesis is very
similar, especially if the goals are more or less equidistant
from the initial state.

Thus, we refine the technique of Observation Overlap
by introducing additional constraints into the LP used to
compute operator counts. Specifically, we force the opera-
tor counting heuristic to only consider operator counts that
include every single observation o ∈ O. The resulting LP
heuristic (which we call hC) then minimizes the cost of the
operator counts for plans that necessarily agree with all ob-
servations. We summarize this Observation Constraint En-
forcement approach in Algorithm 2. This technique is sim-
ilar to that of Algorithm 1 in that it iterates over all goals
computing a heuristic value. However, instead of computing
observation hits by looking at individual counts, it generates
the constraints for the operator-counting heuristic (Line 3)
and adds constraints to ensure that the count of the opera-
tors corresponding to each observation is greater than one
(Lines 4–5). Finally, we choose the goal hypotheses that
minimize the operator count heuristic distance from the ini-
tial state (Line 8).

Enforcement Delta
Although enforcing constraints to ensure that the LP heuris-
tic computes only plans that do contain all observations
helps us overcome the limitations of computing the overlap
of the operator counts, this approach has a major shortcom-
ing: it considers all observations as valid operators gener-
ated by the observed agent. Therefore, the heuristic resulting
from the minimization of the LP might overestimate the ac-
tual length of the plan for the goal hypothesis due to noise.
This may happen for one of two reasons: either the noise
is simply a sub-optimal operator in a valid plan, or it is an
operator that is completely unrelated to the plan that gener-
ated the observations. In both cases, the resulting heuristic
value may prevent the algorithm from selecting the actual
goal from among the goal hypotheses. This overestimation,
however, has an important property in relation to the basic
operator counting heuristic, which is that hC always domi-
nates the operator counting heuristic h, in Proposition 1.

Algorithm 3 Goal Recognition using Heuristic Difference
of Operator Counts.
Input: Ξ planning domain definition, I initial state, G set of can-
didate goals, and O observations.
Output: Recognized goal(s).
1: function DELTARECOGNIZE(Ξ, I,G, O)
2: for all G ∈ G do . Compute hδ(I) for G
3: Y ← GENERATECONSTRAINTS(Ξ, I, G)
4: Y ← COMPUTEOPERATORCOUNTS(Y)
5: HG ←

∑
a∈A Ya

6: for all o ∈ O do
7: Y ← Y ∪ Yo > 0
8: Y ← COMPUTEOPERATORCOUNTS(Y)
9: HC,G ←

∑
a∈A Ya

10: Hδ,G ← HC,G −HG

11: return all G s.t G ∈ G ∧Hδ,G = minGHδ,G

Proposition 1 (hC dominates h). Let h be the operator-
counting heuristic from Defs. 10-11, hC be the over-
constrained heuristic that accounts for all observations o ∈
O, and s a state of Π. Then hC(s) ≥ h(s).

Proof. Let Ch be set of constraints used in h(s), and ChC
be set of constraint used to compute hC(s). Every feasible
solution to ChC is a solution to Ch. This is because to gen-
erate ChC we only add constraints to Ch. Thus, a solution to
ChC has to satisfy all constraints in Ch. Therefore, since we
are solving a minimization problem the value of the solution
for Ch cannot be larger than the solution to ChC .

The intuition here is that the operator-counting heuristic h
estimates the total cost of any optimal plan, regardless of the
observations, while hC estimates a plan following all obser-
vations, including noise, if any. If there is no noise, the sum
of the counts must agree (even if the counts are different),
whereas if there is noise and assuming the noise is evenly
distributed, there will be differences in all counts. Thus, our
last approach consists of computing the difference between
hC and h, and infer that the goal hypothesis for which these
values are closer must be the correct goal. We call the result-
ing heuristic hδ and formalize this approach in Algorithm 3.
Here we compute the LP twice, once with only the basic
operator-counting constraints (Line 4), and once with the
constraints enforcing the observations in the operator counts
(Line 8), using these two values to compute hδ (Line 10).
The algorithm then returns goal hypotheses that minimize
hδ (Line 11).

Experiments and Results
To evaluate the effectiveness of our approaches, we imple-
mented each of the algorithms described earlier and per-
formed the goal recognition process over the large dataset
introduced by Pereira et al. (2017). This dataset contains
thousands of problems for goal and plan recognition un-
der varying levels of observability for a number of tradi-
tional IPC domains (Vallati et al. 2018), including BLOCKS-
WORLD, CAMPUS, DEPOTS, DRIVERLOG, Dockworker
robots (DWR), IPC-GRID, FERRY, Intrusion Detection

(INTRUSION), KITCHEN, LOGISTICS, MICONIC, ROVER,
SATELLITE, SOKOBAN, and Zeno Travel (ZENO). It also
contains over a thousand problems under partial observabil-
ity and noisy observations in the CAMPUS, IPC-GRID, IN-
TRUSION and KITCHEN domains. The baselines of our ex-
perimentation were the original deterministic approach from
Ramı́rez and Geffner (2009) (R&G 2009) and the recent
algorithms from Pereira et al. (2017) (huniq) and Martı́n
et al. (2015) (FG2015)2. We implemented our approaches
using PYTHON 2.7 for the main recognition algorithms
with external calls to a customized version of the FAST-
DOWNWARD (Helmert 2006) planning system to compute
the operator counts. Our customized planner returns not
only the operator counts and can also introduce additional
constraints before running the CPLEX 128 optimization
system. We ran experiments in a single core of a 24 core
Intel R© Xeon R© CPU E5-2620 @2.00Ghz with 48GB of
RAM, with a 2-minute time limit and a 2GB memory limit.

Table 1 shows the results for the partially observable, non-
noisy fragment of the dataset, whereas Table 2 shows the
noisy fragment of the dataset3. For the noisy experiments,
each set of observations contained at least two spurious ac-
tions, which, while valid for the plan, were not actually exe-
cuted by the agent being observed. These results show that,
while not nearly as fast as the huniq approach from Pereira
et al. with a θ = 0 recognition threshold, the accuracy (Acc
%) of our hδ approach is either competitive or superior in
virtually all domains (except for some levels of observabil-
ity in IPC-GRID, DWR and KITCHEN), and, even for the
domains where the accuracy is similar, or lower, the spread
(SinG) of the resulting goals is consistently lower, i.e., the
returned goals are unique for most problems. The accuracy
of our approach, thus, consistently matches or surpasses that
of R&G 2009, with a computational cost that is also often
smaller than FG 2015. Importantly, the cost of all of our ap-
proaches is basically the same within each domain, regard-
less of the level of observability and noise, since our tech-
nique relies on a single call to a planner that computes the
operator counts for a single state and then stops the planner.
We argue that this is attributable to our inefficient imple-
mentation rather than the technique, for the hδ approach, the
overhead of the FAST-DOWNWARD pre-processing step is
paid multiple times. Unlike R&G 2009, that uses a modified
planning heuristic, and FG 2015, that builds a data structure
and explores it at very high computational cost. We note that
the results for noisy observations show the greatest impact of
hδ with an overall higher accuracy and lower spread across
all domains but KITCHEN.

Finally, results for the KITCHEN domain stand out in our
experiments in that our some of our approaches consistently
show underwhelming performance both in noisy and non-
noisy domains. Counter-intuitively, for this particular do-

2We excluded the results of (Sohrabi et al. 2016) from our com-
parison as it timed out for virtually all problems in all domains,
even with a 20-minute timeout.

3Timeout indicates that approach exceeded the two-minute
timeout we set for the experiments, whereas the † symbol indicates
a runtime failure for most problems in the domain.

main, the more observations we have available, the worse
the performance. This seems to be a problem for all other
approaches under noisy conditions, though not under incom-
plete observations. Moreover, since the loss of accuracy with
fuller observability also occurs for the non-noisy setting, we
surmise this to stem from the domain itself, rather than the
algorithm’s ability to handle noise, and defer investigation
of this issue to future work.

Related Work
Our work follows the traditional of goal and plan recog-
nition as planning algorithms as defined by Ramı́rez and
Geffner (2009; 2010). The former work yields higher recog-
nition accuracy in our settings (and hence we chose it as a
baseline), whereas the latter models goal recognition as a
problem of estimating the probability of a goal given the ob-
servations. Such work uses a Bayesian framework to com-
pute the probability of goals given observations by comput-
ing the probability of generating a plan given a goal, which
they accomplish by running a planner multiple times to es-
timate the probability of the plans that either comply or not
with the observations. Recent research on goal recognition
has yielded a number of approaches to deal with partial ob-
servability and noisy observations, of which we single out
three key contributions. First, Martı́n et al. (2015) devel-
oped a goal recognition approach based on constructing a
planning graph and propagating operator costs and the inter-
action among operators to provide an estimate of the prob-
abilities of each goal hypothesis. While their approach pro-
vides probabilistic estimates for each goal, its precision in
inferring the topmost goals is consistently lower than ours,
often ranking multiple goals with equal probabilities (i.e.,
having a large spread). Second, Sohrabi et al. (2016) devel-
oped an approach that also provides a probabilistic interpre-
tation and explicitly deals with noisy observations. Their ap-
proach works through a compilation of the recognition prob-
lem into a planning problem that is processed by a planner
that computes a number of approximately optimal plans to
compute goal probabilities under R&G’s Bayesian frame-
work. Finally, Pereira et al. (2017) develop heuristic goal
recognition approaches using landmark information. This
approach is conceptually closer to ours in that we also com-
pute heuristics, but we aim to overcome the potential spar-
sity of landmarks in each domain by using operator-count
information, as well as explicitly handle noise by introduc-
ing additional constraints in heuristic hC and comparing the
distance to the unconstrained h heuristic.

Conclusion and Discussion
We developed a novel class goal recognition technique
based on operator-counting heuristics from classical plan-
ning (Pommerening et al. 2014) which, themselves rely on
ILP constraints to estimate which operators occur in valid
optimal plans towards a goal. The resulting approaches are
competitive with the state of the art in terms of high accu-
racy and low false positive rate (i.e., the spread of returned
goals), at a moderate computational cost. We show empiri-
cally that the overall accuracy of our best approach is sub-

h hc hδ R&G 2009 FG 2015 huniq
|G| % Obs |O| Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G

B
L

O
C

K
S

(1
07

6)

20.0

10 1.8 8.896 23.2% 2.17 8.916 45.1% 2.6 17.812 95.1% 7.74 1.235 86.8% 7.84 36.562 65.8% 9.11 0.131 31.6% 1.03
30 4.9 8.877 16.3% 1.54 8.897 67.9% 2.02 17.774 87.8% 2.71 1.698 87.2% 3.56 36.648 78.1% 10.53 0.144 51.4% 1.06
50 7.6 8.874 14.2% 1.37 8.875 79.3% 1.55 17.749 91.5% 1.74 2.497 97.9% 2.63 34.290 81.3% 10.68 0.168 60.1% 1.08
70 11.1 8.382 11.0% 1.32 8.4 93.9% 1.21 16.782 98.4% 1.4 3.704 97.5% 1.83 37.056 89.8% 8.63 0.184 79.1% 1.13

100 14.5 8.208 10.9% 1.12 8.227 100.0% 1.03 16.435 100.0% 1.21 6.123 100% 1.46 40.405 100.0% 1.22 0.238 100% 1.09
C

A
M

P
U

S
(7

5) 2.0

10 1.0 0.631 53.3% 1.0 0.628 60.0% 1.07 1.259 100.0% 1.27 0.084 100% 1.46 0.717 53.3% 1.0 0.027 100% 1.13
30 2.0 0.628 53.3% 1.0 0.631 73.3% 1.2 1.259 100.0% 1.07 0.097 100% 1.33 0.696 80.0% 1.13 0.042 100% 1.13
50 3.0 0.634 40.0% 1.0 0.63 93.3% 1.27 1.264 100.0% 1.0 0.104 100% 1.33 0.676 66.6% 1.26 0.055 93.3% 1.13
70 4.4 0.628 53.3% 1.0 0.629 100.0% 1.07 1.257 100.0% 1.07 0.115 100% 1.26 0.668 86.6% 1.6 0.058 100% 1.0

100 5.5 0.624 60.0% 1.0 0.626 100.0% 1.0 1.25 100.0% 1.07 0.128 100% 1.13 0.631 93.3% 1.53 0.061 100% 1.0

D
E

P
O

T
S

(3
64

)

8.5

10 3.1 5.76 15.5% 1.29 5.715 32.1% 1.54 11.475 53.6% 1.83 1.485 77.3% 3.98 † † † 0.331 32.1% 1.09
30 8.6 5.767 14.3% 1.31 5.693 69.0% 1.64 11.46 64.3% 1.19 2.307 77.3% 2.39 † † † 0.356 47.6% 1.07
50 14.1 5.476 14.3% 1.21 5.438 91.7% 1.33 10.914 85.7% 1.1 3.433 84.5% 1.91 † † † 0.415 71.4% 1.02
70 19.7 5.304 14.3% 1.2 5.252 100.0% 1.08 10.556 94.0% 1.01 5.149 91.6% 1.67 † † † 0.481 84.5% 1.01

100 24.4 5.238 14.3% 1.21 5.205 100.0% 1.0 10.443 100.0% 1.0 7.094 92.8% 1.46 † † † 0.575 100% 1.03

D
R

IV
E

R
L

O
G

(3
64

)

10.5

10 2.6 3.342 32.1% 1.43 3.316 42.9% 1.74 6.658 73.8% 2.43 1.192 96.4% 4.71 79.487 42.8% 1.91 0.284 35.7% 1.10
30 6.9 3.337 28.6% 1.23 3.351 75.0% 1.45 6.688 77.4% 1.55 1.444 92.8% 3.34 60.168 70.2% 3.19 0.284 35.7% 1.10
50 11.1 3.338 28.6% 1.13 3.35 92.9% 1.15 6.688 91.7% 1.17 1.608 94.1% 2.88 64.427 79.7% 4.59 0.290 64.2% 1.14
70 15.6 3.304 28.6% 1.18 3.308 97.6% 1.12 6.612 95.2% 1.11 1.925 89.2% 2.46 75.084 82.1% 4.10 0.298 90.4% 1.14

100 21.7 3.301 28.6% 1.04 3.347 100.0% 1.0 6.648 100.0% 1.04 2.809 89.2% 2.14 96.091 96.4% 1.11 0.305 100% 1.17

D
W

R
(3

64
)

7.3

10 5.7 3.604 38.1% 1.6 3.601 50.0% 1.71 7.205 56.0% 2.19 1.634 83.3% 4.21 66.496 92.8% 6.38 0.491 33.3% 1.05
30 16.0 3.63 36.9% 1.2 3.579 81.0% 1.42 7.209 76.2% 1.46 2.977 80.9% 3.34 54.461 97.6% 6.56 0.518 51.1% 1.05
50 26.2 3.611 36.9% 1.04 3.583 98.8% 1.2 7.194 84.5% 1.15 4.485 72.6% 2.27 56.255 98.8% 6.27 0.533 61.9% 1.04
70 36.8 3.625 36.9% 1.04 3.569 100.0% 1.02 7.194 94.0% 1.04 10.432 70.2% 2.04 65.101 98.8% 6.0 0.540 78.5% 1.03

100 51.9 3.581 35.7% 1.0 3.58 100.0% 1.0 7.161 100.0% 1.0 25.091 67.8% 1.67 86.459 100.0% 1.0 0.559 100% 1.01

IP
C

-G
R

ID
(6

73
)

9.0

10 2.9 3.811 9.8% 1.0 3.828 18.9% 1.01 7.639 90.8% 1.88 1.084 96.1% 2.45 Timeout - - 0.220 62.7% 2.34
30 7.8 3.871 9.2% 1.0 3.867 49.7% 1.2 7.738 94.1% 1.25 1.475 97.3% 1.42 Timeout - - 0.234 83.6% 1.66
50 12.7 3.821 9.8% 1.0 3.82 79.1% 1.03 7.641 96.7% 1.07 1.932 100% 1.15 Timeout - - 0.245 90.1% 1.18
70 17.9 3.902 9.2% 1.0 3.878 96.1% 1.03 7.78 94.1% 1.05 2.556 100% 1.05 Timeout - - 0.253 97.3% 1.11

100 24.8 3.62 9.8% 1.0 3.637 98.4% 1.0 7.257 96.7% 1.0 3.868 100% 1.0 Timeout - - 0.261 100% 1.0

F
E

R
R

Y
(3

64
)

7.5

10 2.9 2.683 39.3% 1.65 2.686 72.6% 2.05 5.369 100.0% 3.17 0.511 98.8% 3.36 6.659 91.6% 6.65 0.068 58.3% 1.17
30 7.6 2.693 39.3% 1.31 2.686 94.0% 1.48 5.379 100.0% 1.56 0.677 100% 1.76 6.801 100.0% 7.57 0.073 83.3% 1.05
50 12.3 2.673 39.3% 1.17 2.671 97.6% 1.2 5.344 100.0% 1.29 0.794 100% 1.41 8.296 100.0% 7.57 0.084 91.6% 1.01
70 17.3 2.661 39.3% 1.12 2.673 100.0% 1.08 5.334 100.0% 1.1 1.202 98.8% 1.14 10.649 100.0% 7.32 0.092 100% 1.0

100 24.2 2.695 39.3% 1.11 2.708 100.0% 1.07 5.403 100.0% 1.07 1.693 100% 1.07 13.625 100.0% 1.07 0.099 100% 1.0

IN
T

R
U

S
IO

N
(4

65
)

15.0

10 1.9 4.701 10.5% 1.25 4.713 27.6% 1.81 9.414 100.0% 2.52 0.724 100% 2.53 0.475 89.5% 3.18 0.077 64.7% 1.23
30 4.5 4.511 9.5% 1.12 4.518 80.0% 1.4 9.029 100.0% 1.11 0.804 100% 1.11 0.476 90.5% 1.88 0.083 85.7% 1.02
50 6.7 4.421 9.5% 1.09 4.424 94.3% 1.12 8.845 100.0% 1.02 0.888 100% 1.02 0.496 94.3% 1.45 0.089 94.2% 1.04
70 9.5 4.458 10.5% 1.09 4.453 97.1% 1.13 8.911 100.0% 1.0 1.012 100% 1.0 0.637 99.1% 1.05 0.093 94.2% 1.0

100 13.1 4.419 8.9% 1.13 4.413 100.0% 1.0 8.832 100.0% 1.0 1.257 100% 1.0 0.828 100.0% 1.04 0.098 100% 1.0

K
IT

C
H

E
N

(7
5) 2.0

10 1.3 0.801 53.3% 1.0 0.807 53.3% 1.0 1.608 100.0% 1.87 0.085 100% 1.86 0.373 100.0% 1.86 0.002 100% 1.33
30 3.5 0.789 26.7% 1.0 0.785 33.3% 1.07 1.574 100.0% 1.33 0.097 100% 1.33 0.360 100.0% 1.33 0.003 100% 1.33
50 4.0 0.792 46.7% 1.0 0.802 53.3% 1.07 1.594 93.3% 1.33 0.104 100% 1.46 0.392 100.0% 1.33 0.006 100% 1.33
70 5.0 0.795 46.7% 1.0 0.787 66.7% 1.13 1.582 80.0% 1.0 0.115 100% 1.26 0.378 100.0% 1.20 0.006 100% 1.46

100 7.4 0.805 46.7% 1.0 0.812 73.3% 1.27 1.617 60.0% 1.0 0.119 100% 1.26 0.483 100.0% 1.40 0.007 100% 1.0

L
O

G
IS

T
IC

S
(6

73
)

10.5

10 2.9 3.668 28.1% 1.47 3.658 54.9% 1.66 7.326 90.2% 2.27 1.201 99.3% 2.98 † † † 0.563 55.5% 1.24
30 8.2 3.416 27.5% 1.07 3.416 75.8% 1.08 6.832 90.2% 1.2 1.798 98.6% 1.39 † † † 0.571 76.4% 1.20
50 13.4 3.417 28.1% 1.01 3.409 91.5% 1.05 6.826 90.8% 1.03 2.545 98.6% 1.29 † † † 0.599 86.2% 1.10
70 18.9 3.799 28.1% 0.96 3.8 91.5% 0.95 7.599 92.2% 0.99 3.460 100% 1.13 † † † 0.608 96.7% 1.05

100 26.5 3.786 31.1% 0.97 3.77 93.4% 0.93 7.556 93.4% 0.93 4.887 100% 1.0 † † † 0.615 100% 1.0

M
IC

O
N

IC
(3

64
)

6.0

10 3.9 2.617 39.3% 1.32 2.616 69.0% 1.4 5.233 100.0% 2.12 0.838 100% 3.26 † † † 0.321 54.7% 1.26
30 11.1 2.612 39.3% 1.14 2.614 95.2% 1.24 5.226 100.0% 1.19 1.196 100% 1.58 † † † 0.326 90.1% 1.08
50 18.1 2.614 39.3% 1.13 2.61 100.0% 1.1 5.224 100.0% 1.1 1.722 100% 1.28 † † † 0.339 96.4% 1.01
70 25.3 3.941 39.3% 1.06 3.941 100.0% 1.0 7.882 100.0% 1.01 2.504 100% 1.03 † † † 0.344 100% 1.0

100 35.6 4.116 39.3% 1.07 4.048 100.0% 1.0 8.164 100.0% 1.0 5.105 100% 1.0 † † † 0.356 100% 1.0

R
O

V
E

R
(3

64
)

6.0

10 3.0 3.993 52.4% 2.26 4.023 69.0% 1.58 8.016 92.9% 2.39 0.704 98.8% 2.85 † † † 0.310 51.1% 1.10
30 7.9 3.952 48.8% 1.68 3.916 90.5% 1.27 7.868 84.5% 1.14 1.029 100% 1.66 † † † 0.323 69.1% 1.07
50 12.7 3.79 50.0% 1.43 3.781 100.0% 1.13 7.571 97.6% 1.11 1.355 100% 1.29 † † † 0.331 85.7% 1.01
70 17.9 3.763 52.4% 1.32 3.79 100.0% 1.02 7.553 97.6% 1.0 1.796 100% 1.07 † † † 0.345 91.6% 1.0

100 24.9 3.772 53.6% 1.21 3.776 100.0% 1.0 7.548 100.0% 1.0 2.292 100% 1.07 † † † 0.356 100% 1.0

S
A

T
E

L
L

IT
E

(3
64

)

6.5

10 2.1 3.922 30.9% 1.67 3.902 64.3% 2.21 7.824 91.7% 2.7 1.049 97.6% 3.41 14.821 89.3% 4.86 0.431 47.6% 1.21
30 5.4 3.928 28.6% 1.51 3.892 91.7% 1.73 7.82 91.7% 1.65 1.182 97.6% 2.40 32.172 86.9% 4.21 0.442 69.1% 1.14
50 8.7 3.956 32.1% 1.29 3.928 95.2% 1.26 7.884 95.2% 1.27 1.398 97.6% 1.69 51.567 88.1% 3.65 0.458 80.9% 1.10
70 12.2 3.904 32.1% 1.19 3.929 100.0% 1.08 7.833 96.4% 1.07 1.884 96.4% 1.52 75.363 92.8% 2.89 0.460 94.1% 1.03

100 16.8 3.955 32.1% 1.14 3.903 100.0% 1.04 7.858 96.4% 1.04 2.107 96.4% 1.33 113.381 100.0% 2.57 0.475 100% 1.07

S
O

K
O

B
A

N
(3

64
)

7.3

10 3.1 5.883 22.6% 1.19 5.851 64.3% 1.27 11.734 67.9% 1.27 3.025 69.1% 4.02 461.701 67.8% 2.98 0.523 51.1% 1.85
30 8.7 5.854 19.1% 1.08 5.73 89.3% 1.02 11.584 85.7% 1.06 4.429 89.2% 4.10 370.412 83.3% 3.14 0.531 55.9% 1.21
50 14.1 5.911 21.4% 1.04 5.71 96.4% 1.02 11.621 90.5% 1.0 7.553 89.2% 4.16 358.028 82.1% 2.27 0.540 69.1% 1.20
70 19.8 5.897 22.6% 1.08 5.653 100.0% 1.01 11.55 96.4% 1.01 9.112 89.2% 4.17 353.721 85.7% 1.84 0.554 86.9% 1.08

100 35.5 5.849 25.0% 1.07 5.572 100.0% 1.0 11.421 100.0% 1.0 12.008 89.2% 4.53 353.183 85.7% 1.03 0.562 100% 1.0

Z
E

N
O

(3
64

)

7.5

10 2.6 5.474 34.5% 1.33 5.45 58.3% 1.68 10.924 82.1% 2.62 1.834 96.4% 3.41 93.917 66.6% 1.63 0.491 36.9% 1.04
30 6.7 5.424 33.3% 1.24 5.449 86.9% 1.35 10.873 89.3% 1.57 2.528 88.1% 2.11 88.285 78.6% 2.27 0.504 60.7% 1.02
50 10.8 5.005 33.3% 1.2 5.003 95.2% 1.1 10.008 91.7% 1.1 3.071 92.8% 1.41 105.814 91.6% 2.56 0.516 76.1% 1.0
70 15.2 4.377 35.7% 1.17 4.321 100.0% 1.0 8.698 100.0% 1.0 3.986 96.4% 1.13 125.652 94.1% 2.58 0.522 90.4% 1.0

100 21.1 4.378 35.7% 1.18 4.297 100.0% 1.0 8.675 100.0% 1.0 4.815 100% 1.07 168.674 100.0% 1.0 0.530 100% 1.0
Average 3.927 30.6% 1.202 3.908 82.7% 1.25 11.761 92.4% 1.440 2.697 94.7% 2.110 7.834 63.0% 3.464 0.311 79.7% 1.122

Table 1: Goal recognition experiments at various levels of observability.

h hc hδ R&G 2009 FG 2015 huniq

|G| % Obs |O| Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G Time Acc % S in G

C
A

M
P

U
S

(5
16

)

2

25 3.1 0.627 53.5% 1.0 0.629 83.0% 1.24 1.256 87.6% 1.12 0.073 88.3% 1.27 0.713 79.8% 1.33 0.030 82.1% 1.13
50 4.5 0.634 53.5% 1.0 0.634 91.5% 1.19 1.268 92.3% 1.06 0.076 89.9% 1.26 0.666 90.6% 1.67 0.031 78.2% 1.02
75 6.4 0.625 53.5% 1.0 0.625 95.3% 1.19 1.25 94.6% 1.09 0.079 90.6% 1.27 0.655 94.6% 1.79 0.034 73.6% 1.0

100 7.5 0.619 53.5% 1.0 0.62 95.3% 1.22 1.239 94.6% 1.04 0.084 89.1% 1.22 0.644 97.7% 1.81 0.037 72.1% 1.0

IP
C

-G
R

ID
(3

00
)

8.3

25 4.1 3.421 13.3% 1.0 3.406 30.0% 1.02 6.827 86.7% 1.49 0.537 71.1% 2.65 0.494 43.3% 2.31 0.102 30.0% 1.11
50 7.6 3.392 13.3% 1.0 3.384 68.9% 1.1 6.776 96.7% 1.14 0.649 95.5% 1.28 0.511 81.1% 1.78 0.116 64.4% 1.03
75 11.5 3.399 13.3% 1.0 3.392 98.9% 1.01 6.791 97.8% 1.07 0.712 100% 1.01 0.654 93.3% 1.10 0.124 87.7% 1.03
100 16.9 3.403 13.3% 1.0 3.41 100.0% 1.0 6.813 100.0% 1.0 0.805 100% 1.0 0.885 100.0% 1.06 0.136 100% 1.0

IN
T

R
U

S
IO

N
(3

00
)

16.6

25 3.6 4.422 10.0% 1.24 4.433 26.7% 1.71 8.855 71.1% 2.7 0.462 12.2% 7.55 Timeout - - 0.208 53.3% 1.72
50 6.7 4.457 10.0% 1.12 4.468 75.6% 1.41 8.925 96.7% 1.33 0.469 4.4% 8.06 Timeout - - 0.212 83.3% 1.33
75 10.2 4.396 10.0% 1.07 4.394 90.0% 1.11 8.79 100.0% 1.01 0.475 6.6% 7.88 Timeout - - 0.224 94.4% 1.08

100 15.1 4.451 10.0% 1.03 4.44 100.0% 1.0 8.891 100.0% 1.0 0.476 10.0% 7.76 Timeout - - 0.239 100% 1.0

K
IT

C
H

E
N

(1
50

)

2.0

25 2.5 0.678 0.0% 0.0 0.812 46.7% 1.0 1.49 73.3% 1.69 0.139 71.1% 1.57 0.381 53.3% 1.33 0.081 88.8% 2.55
50 4.8 0.681 0.0% 0.0 0.809 51.1% 1.04 1.49 55.6% 1.33 0.135 57.7% 1.42 0.410 51.1% 1.22 0.084 64.4% 1.71
75 7.3 0.682 0.0% 0.0 0.819 48.9% 1.02 1.501 53.3% 1.33 0.138 57.7% 1.31 0.426 53.3% 1.20 0.090 57.7% 1.66

100 11.0 0.683 0.0% 0.0 0.811 73.3% 1.27 1.494 53.3% 1.13 0.144 60.0% 1.46 0.538 73.3% 1.26 0.093 66.6% 1.13
Average 2.286 19.2% 0.779 2.318 73.5% 1.158 4.604 84.6% 1.283 0.341 62.8% 2.998 30.436 76.0% 1.488 0.115 74.8% 1.281

Table 2: Goal recognition experiments with noisy observations at various levels of observability.

stantially superior to the state-of-the-art over a large dataset.
Importantly, the values of the operator-counting constraints
we compute for each of the heuristics can be used as expla-
nations for recognized goals.

The techniques described in this paper use a set of simple
additional constraints in the ILP formulation to achieve sub-
stantial performance, so we expect substantial future work
towards further goal recognition approaches and heuris-
tics that explore more refined constraints to improve accu-
racy and reduce spread, as well as deriving a probabilis-
tic approach using operator-counting information. Exam-
ples of such work include using the constraints to force
the LP to generate the counterfactual operator-counts (i.e.,
non-compliant with the observations) used by the R&G ap-
proach, or, given an estimate of the noise, relax the observa-
tion constraints to allow a number of observations to not be
included in the resulting operator-counts.
Acknowledgements: This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nivel
Superior – Brasil (CAPES) - Finance Code 001. Felipe
acknowledges support from CNPq under project numbers
407058/2018-4 and 305969/2016-1, as well as FAPERGS
process number 18/2551-0000500-2.

References
[Bonet 2013] B Bonet. An Admissible Heuristic for SAS+
Planning Obtained from the State Equation. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, 2013.

[Chakraborti et al. 2018] Tathagata Chakraborti, Anagha
Kulkarni, Sarath Sreedharan, David E Smith, and Subbarao
Kambhampati. Explicability? Legibility? Predictability?
Transparency? Privacy? Security? The Emerging Landscape
of Interpretable Agent Behavior. arXiv.org, November
2018.

[Culberson and Schaeffer 1998] Joseph C Culberson and
Jonathan Schaeffer. Pattern Databases. Computational In-
telligence, 14(3):318–334, August 1998.

[Helmert 2006] Malte Helmert. The Fast Downward Plan-
ning System. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffmann et al. 2004] J Hoffmann, J Porteous, and L Se-
bastia. Ordered Landmarks in Planning. Journal of Artificial
Intelligence Research, 22(1):215–278, April 2004.

[Karpas and Domshlak 2009] Erez Karpas and Carmel
Domshlak. Cost-Optimal Planning with Landmarks. IJCAI,
2009.

[Martı́n et al. 2015] Yolanda E Martı́n, Marı́a D R Moreno,
and David E Smith. A Fast Goal Recognition Technique
Based on Interaction Estimates. IJCAI, 2015.

[Meneguzzi 2009] Felipe Meneguzzi. Extending agent lan-
guages for multiagent domains. PhD thesis, King’s College
London, 2009.

[Pereira and Meneguzzi 2017] Ramon Fraga Pereira and Fe-
lipe Meneguzzi. Goal and plan recognition datasets using
classical planning domains, July 2017.

[Pereira and Meneguzzi 2018] Ramon Pereira and Felipe
Meneguzzi. Goal Recognition in Incomplete Domain Mod-
els. In Association for the Advancement of Artificial Intelli-
gence (AAAI), pages 8127–8128, 2018.

[Pereira et al. 2017] Ramon Fraga Pereira, Nir Oren, and
Felipe Meneguzzi. Landmark-Based Heuristics for Goal
Recognition. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence, 2017.

[Pommerening et al. 2013] Florian Pommerening, Gabriele
Röger, and Malte Helmert. Getting the Most Out of Pattern
Databases for Classical Planning. IJCAI, 2013.

[Pommerening et al. 2014] Florian Pommerening, Gabriele
Röger, Malte Helmert, and Blai Bonet. LP-Based Heuris-
tics for Cost-Optimal Planning. ICAPS, 2014.

[Ramı́rez and Geffner 2009] Miquel Ramı́rez and Hector
Geffner. Plan recognition as planning. In International
Joint Conference on Artificial Intelligence, pages 1778–
1783, 2009.

[Ramı́rez and Geffner 2010] Miquel Ramı́rez and Hector
Geffner. Probabilistic Plan Recognition Using Off-the-Shelf
Classical Planners. In AAAI, pages 1121–1126, 2010.

[Sohrabi et al. 2016] S Sohrabi, A V Riabov, and O Udrea.
Plan Recognition as Planning Revisited. In International
Joint Conference on Artificial Intelligence, pages 3258–
3264, 2016.

[Vallati et al. 2018] Mauro Vallati, Lukás Chrpa, and
Thomas Leo McCluskey. What you always wanted to know
about the deterministic part of the International Planning
Competition (IPC) 2014 (but were too afraid to ask).
Knowledge Engineering Review, 33:383, 2018.

[van den Briel et al. 2007] Menkes van den Briel, J Benton,
Subbarao Kambhampati, and Thomas Vossen. An LP-Based
Heuristic for Optimal Planning. CP, 4741(Chapter 46):651–
665, 2007.

[Zhu and Givan 2003] Lin Zhu and Robert Givan. Landmark
Extraction via Planning Graph Propagation. In ICAPS 2003
Doctoral Consortium, pages 156–160, 2003.

Towards Model-Based Contrastive Explanations for Explainable Planning

Benjamin Krarup∗, Michael Cashmore∗, Daniele Magazzeni∗, Tim Miller†

Abstract

An important type of question that arises in Explainable Plan-
ning is a contrastive question, of the form “Why action A
instead of action B?”. These kinds of questions can be an-
swered with a contrastive explanation that compares proper-
ties of the original plan containing A against the contrastive
plan containing B. An effective explanation of this type serves
to highlight the differences between the decisions that have
been made by the planner and what the user would expect,
as well as to provide further insight into the model and the
planning process. Producing this kind of explanation requires
the generation of the contrastive plan. This paper introduces
domain-independent compilations of user questions into con-
straints. These constraints are added to the planning model,
so that a solution to the new model represents the contrastive
plan. We introduce a formal description of the compilation
from user question to constraints in a temporal and numeric
PDDL2.1 planning setting.

1 Introduction
Explainable AI (XAI) is an emerging and important research
area within AI. Recent work has shown that AI Planning
is an important tool in XAI, as its decision-making mecha-
nisms are model-based and so in principle more transparent.
This recent work includes many approaches towards provid-
ing explanations in AI planning.

Chakraborti et al. (2019) gives an in-depth overview of
this work and different terms used within the XAI landscape.
In particular, Zhang et al. (2017) shows that if an AI sys-
tem behaves “explicably” there is less of a need for explana-
tions. However, this is not always possible and explanation
is sometimes required. Chakraborti et al. (2017) tackles ex-
planation as a model reconciliation problem, arguing that the
explanation must be a difference between the human model
and AI model. Seegebarth et al. (2012) show that by repre-
senting plans as first order logic formulae generating expla-
nations is feasible in real time. In contrast, in this paper we
focus on contrastive “why” questions. Fox, Long, and Mag-
azzeni (2017) highlight some important questions in XAIP
and discuss possible answers, and also describe how these
“why” questions are especially important. Smith (2012) out-
lines the approach to planning as an iterative process for bet-
∗King’s College London, UK, {firstname.lastname}@kcl.ac.uk
†University of Melbourne, Australia, tmiller@unimelb.edu.au

Figure 1: The four-stage process for generating a contrastive
explanation from a user question. The hypothetical model is
created by compiling the formal question into the planning
model (in PDDL 2.1).

ter modelling preferences and providing explanations. We
propose to follow this same approach.

The aim of explanations is to improve the user’s lev-
els of understanding and trust in the system they are us-
ing. These explanations can be local (regarding a specific
plan) or global (concerning how the planning system works
in general). In this paper we focus on local explanations
of temporal and numeric planning problems, introducing
an approach for explaining why a planner has made a cer-
tain decision. Through active exploration of these specific
cases, the user may also gain global insight into the way
in which the planner makes decisions. (See (Lipton 1990;
2016; Ribeiro, Singh, and Guestrin 2016)).

To achieve an understanding of a decision, it is important
that explanations adapt to the specific context and mental
model of the user. One step towards this is to support the
user iteratively asking different questions suitable for their
context. Haynes et al. (2009) identify ten question types
that a user might have about an intelligent system, also de-
scribed by Mueller et al. (2019). Lim et al. (2009) show in a
grounded study that of these, the questions why and why not
provided the most benefit in terms of objective understand-
ing and feelings of trust. In the context of planning why not

questions are contrastive questions, because the user is ask-
ing why some action was selected rather than some other
action that was not.

Instead, Miller argues that all such questions can be asked
as contrastive questions of the form “Why action A rather
than action B?” (Miller 2018). Contrastive questions capture
the context of the question; they more precisely identify the
gaps in the user’s understanding of a plan that needs to be
explained (Lewis 1986). A contrastive question about a plan
can be answered by a contrastive explanation. Contrastive
explanations will compare the original plan against a con-
trastive plan that accounts for the user expectation. Provid-
ing contrastive explanations is not only effective in improv-
ing understanding, but is simpler than providing a full causal
analysis (Miller 2019).

Following the approach of Smith (2012) we propose an
approach to contrastive explanations through a dialogue with
the user. The proposed approach consists of an iterative
four-stage process illustrated in Figure 1. First the user asks
a contrastive question in natural language. Second, a con-
straint is derived from the user question, in the following
we refer to this constraint as the formal question. Third a
hypothetical model (HModel) is generated which encapsu-
lates this constraint. A solution to this model is the hypothet-
ical plan (HPlan) that can be compared to the original plan
to show the consequence of the user suggestion. The user
can compare plans and iterate the process by asking further
questions, and refining the HModel. This allows the user to
combine different compilations to create a more constrained
HModel, producing more meaningful explanations, until the
explanation is satisfactory. Each stage of this process rep-
resents a vital research challenge. This paper describes and
formalises the third stage of this process: compiling the for-
mal question into a hypothetical model for temporal and nu-
meric planning.

We are interested in temporal and numeric planning prob-
lems, for which optimal solutions are difficult to find. There-
fore, while the process described above serves for explana-
tion, the insight of the user can also result in guiding the
planning process to a more efficient solution. As noted by
(Smith 2012), the explanations could also give the user the
opportunity to improve the plan with respect to their own
preferences. The user could have hidden preferences which
have not been captured in the model. The user could ask
questions which enforce constraints that favour these prefer-
ences. The new plan could be sub-optimal, but more prefer-
able to the user.

The contribution of this paper is a formalisation
of domain-independent and planner-agnostic compilations
from formal contrastive questions to PDDL2.1 (Fox and
Long 2003), necessary for providing contrastive explana-
tions. The compilations shown are not exhaustive. However,
they do cover an interesting set of questions which users
would commonly have about both classical and temporal
plans. The paper is organised as follows. The next section
describes the planning definitions we will use throughout the
paper. In Section 3 we describe the running example that we
use to demonstrate our compilations throughout the paper.
In Section 4 we list the set of formal questions that we are

interested in, and formalise the compilations of each of these
into constraints. Finally, we conclude the paper in Section 5
whilst touching on some interesting future work.

2 Background
Our definition of a planning model follows the definition of
PDDL2.1 given by (Fox and Long 2003), extended by a set
of time windows as follows.

Definition 1 A planning model is a pair Π = 〈D,Prob〉.
The domainD = 〈Ps, V s,As, arity〉 is a tuple where Ps is
a finite set of predicate symbols, V s is a finite set of function
symbols, As is a set of action schemas, called operators,
and arity is a function mapping all of these symbols to their
respective arity. The problem Prob = 〈Os, I,G,W 〉 is a
tuple where Os is the set of objects in the planning instance,
I is the initial state, G is the goal condition, and W is a set
of time windows.

A set of atomic propositions P is formed by applying the
predicate symbols Ps to the objects Os (respecting arities).
One proposition p is formed by applying an ordered set of
objects o ⊆ O to one predicate ps, respecting its arity. For
example, applying the predicate (block on ?a ?b) with ar-
ity 2 to the ordered set of objects {blockA, blockB} forms
the proposition (block on blockA blockB). This process is
called “grounding” and is denoted with:

ground(ps, χ) = p

where χ ⊆ O is an ordered set of objects. Similarly the set
of primitive numeric expressions (PNEs) V are formed by
applying the function symbols V s to Os.

A state s consists of a time t ∈ R, a logical part sl ⊆ P ,
and a numeric part sv that describes the values for the PNE’s
at that state. The initial state I is the state at time t = 0.

The goal G = g1, ..., gn is a set of constraints over P
and V that must hold at the end of an action sequence for
a plan to be valid. More specifically, for an action sequence
φ = 〈a1, a2, . . . , an〉 each with a respective time denoted by
Dispatch(ai), we use the definition of plan validity from
(Fox and Long 2003) (Definition 15 “Validity of a Simple
Plan”). A simple plan is the sequence of actions φ which de-
fines a happening sequence, ti=0...k and a sequence of states,
si=0...k+1 such that s0 = I and for each i = 0 . . . k, si+1 is
the result of executing the happening at time ti. The simple
plan φ is valid if sk+1 |= G.

Each time window w ∈ W is a tuple w = 〈wlb, wub, wv〉
where wv is a proposition which becomes true or a numeric
effect which acts upon some n ∈ V . wlb ∈ R is the time
at which the proposition becomes true, or the numeric effect
is applied. wub ∈ R is the time at which the proposition
becomes false. The constraint wlb < wub must hold. Note
that the numeric effect is not effected at wub.

Similar to propositions and PNEs, the set of ground ac-
tions A is generated from the substitution of objects for op-
erator parameters with respect to it’s arity. Each ground ac-
tion is defined as follows:

Definition 2 A ground action a ∈ A has a duration
Dur(a) which constrains the length of time that must

(define (domain turtlebot_demo)
(:types waypoint robot)
(:predicates

(robot_at ?v - robot ?wp - waypoint)
(connected ?from ?to - waypoint)
(visited ?wp - waypoint))

(:functions
(travel_time ?wp1 ?wp2 - waypoint))

(:durative-action goto_waypoint
:parameters (?v - robot
?from ?to - waypoint)

:duration(= ?duration
(travel_time ?from ?to))

:condition (and
(at start (robot_at ?v ?from))
(over all (connected ?from ?to)))

:effect (and
(at start (not (robot_at ?v ?from)))
(at end (visited ?to))
(at end (robot_at ?v ?to)))))

Figure 2: The robotics domain used as a running example.

pass between the start and end of a; a start (end) con-
dition Pre`(a) (Prea(a)) which must hold at the state
that a starts (ends); an invariant condition Pre↔(a) which
must hold throughout the entire execution of a; add ef-
fects Eff (a)+` ,Eff (a)+a ⊆ P that are made true at the
start and ends of the action respectively; delete effects
Eff (a)−` ,Eff (a)−a ⊆ P that are made false at the start and
end of the action respectively; and numeric effects Eff (a)n`,
Eff (a)n↔, Eff (a)na that act upon some n ∈ V .

3 Running Example
We use as a running example the following planning model.
Figure 2 shows the domain D. The domain describes a sce-
nario in which a robot is able to move between connected
waypoints and mark them as visited. The domain contains
three predicate symbols (robot at, connected, visited)
with arities 2, 2, and 1 respectively. The domain includes
only a single function symbol travel time with arity 2.
There is a single operator goto waypoint.

Figure 3 shows the problem Prob. The problem speci-
fies 7 objects: wp0, wp1, wp2, wp3, wp4, wp5 and kenny.
The initial state specifies which propositions are ini-
tially true, such as the current location of the robot
(robot at kenny wp0), and the initial values of the PNEs,
e.g. (= (travel timewp5wp3) 4.68). The goal is specified
as a constraint over P ∪V , in this example it is that the robot
has visited all of the locations.

Figure 5 shows an example plan that solves this problem.
This plan might appear sub-optimal. The robot moves from
waypoint wp2 to wp1 and then immediately returns to wp2.
This second action might seem redundant to the user. How-
ever, upon closer inspection of the connectivity of waypoints
(shown in Figure 4) we can see that the plan is in fact the op-
timal one. Visiting waypoint wp1 is a goal of the problem,
and it is only connected to waypoints wp0 and wp2, both
of which have already been visited. Waypoint wp0 is only

(define (problem task)
(:domain turtlebot_demo)
(:objects

wp0 wp1 wp2 wp3 wp4 wp5 - waypoint
kenny - robot)

(:init
(robot_at kenny wp0) (visited wp0)
(connected wp0 wp2) (connected wp0 wp4)
(connected wp1 wp0) (connected wp1 wp2)
(connected wp2 wp1) (connected wp2 wp4)
(connected wp2 wp5) (connected wp3 wp5)
(connected wp5 wp0) (connected wp5 wp2)
(connected wp5 wp3)
(= (travel_time wp0 wp2) 1.45)
(= (travel_time wp0 wp4) 2)
...

(:goal (and (visited wp1) (visited wp2)
(visited wp3) (visited wp4) (visited wp5)
)))

Figure 3: Example Problem with some travel time functions
omitted for space.

Figure 4: Waypoint connectivity in the running example.
The robot is only allowed to move along the directed arrows.

0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wp1) [2.00]
3.45: (goto_waypoint kenny wp1 wp2) [2.00]
5.45: (goto_waypoint kenny wp2 wp5) [2.00]
7.45: (goto_waypoint kenny wp5 wp3) [4.68]
12.13: (goto_waypoint kenny wp3 wp5) [4.68]
16.81: (goto_waypoint kenny wp5 wp0) [0.99]
17.80: (goto_waypoint kenny wp0 wp4) [2.00]

Figure 5: Plan generated from the example domain and prob-
lem. The cost of the plan is its duration (19.80).

connected to waypoints wp2 and wp4, wp2 has been visited
and wp4 is a dead end. For these reasons combined, the only
logical option is to move back to wp2 after completing the
goal of visiting wp1. This type of behaviour similarly hap-
pens between waypoints wp3 and wp5.

A graphical representation such as Figure 4 is not al-
ways available, and so even for this simple model and
plan, deducing the reasoning behind the planned ac-
tions is not trivial. This is an example of where XAIP
is useful. Using our proposed approach the user could
have asked the question: “Why do we use the action
(goto waypoint kenny wp1wp2), rather than not using

0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wp5) [2.00]
3.45: (goto_waypoint kenny wp5 wp3) [4.68]
8.13: (goto_waypoint kenny wp3 wp5) [4.68]
12.81: (goto_waypoint kenny wp5 wp2) [2.00]
14.81: (goto_waypoint kenny wp2 wp1) [2.00]
16.81: (goto_waypoint kenny wp1 wp0) [2.00]
18.81: (goto_waypoint kenny wp0 wp4) [2.00]

Figure 6: The hypothetical plan that accounts for the user’s
suggestion, avoiding the action of moving from wp1 to wp2.
The cost of the plan is its duration (20.81).

it?”. From this question we could generate a contrastive plan
with this constraint enforced (shown in Figure 6). Compar-
ing the actions and costs of the original and the new plan
could shed light on why the action needed to be used. The
user can carry on asking questions until they were satisfied.

4 Formalisation
Definition 3 An explanation problem is a tuple E =
〈Π, φ,Q〉, in which Π is a planning model (Definition 1),
φ is the plan generated by the planner, and Q is the specific
question posed by the user. The problem is to provide insight
that helps the user to answer question Q.

In this paper, we assume that the user knows the model
Π and the plan φ, so answers such as stating the goal of the
problem will not increase their understanding. Given this,
we propose the following set of questions, and provide a for-
mal description for compilations of this set of formal ques-
tions of temporal plans:

1. Why is action a used in state s, rather than action b? (Sec-
tion 4.1)

2. Why is action a not used in the plan, rather than being
used? (Section 4.2)

3. Why is action a used in the plan, rather than not being
used? (Section 4.3)

4. Why is action a used outside of time window w, rather
than only being allowed within w? (Section 4.4)

5. Why is action a not used in time window w, rather than
being used within w? (Section 4.5)

6. Why is action a used at time t, rather than at least some
time t′ after/before t? (Section 4.6)

7. Why is action a not performed before (after) action b,
rather than a being performed after (before) b? (Sec-
tion 4.7)

These questions were derived by systematically assessing
ways that counterfactual situations could occur in plans, and
choosing those that would be useful over many applications.
This is not an exhaustive list of possible constraints that can
be enforced upon the original model, however, it does repre-
sent a list of questions that would be useful in specific con-
texts and applications.

Part of being able to answer these questions is the abil-
ity to reason about what would happen in the counterfactual
cases. We approach this problem by generating plans for the

counterfactual cases via compilations. A compilation of a
planning instance where the model is given by Π, and a ques-
tion is given by Q is shown as Compilation(Π, Q) = Π′

where:

Π′ = 〈〈Ps′, V s,As′, arity′〉, 〈Os, I ′, G′,W ′〉〉
We call Π′ the hypothetical model, or HModel.

However, Π′ can also be used as the input model so that
the user can iteratively ask questions about some model, i.e:

Compilation(Compilation(Π, Q), Q′)

This allows the user to stack questions, further increasing
their understanding of the plan through combining compi-
lations. Combining compilations this way provides a much
wider set of possible constraints.

After the HModel is formed, it is solved to give the HPlan.
Any new operators that are used in the compilation to en-
force some constraint are trivially renamed back to the orig-
inal operators they represent. For each iteration of compila-
tion the HPlan is validated against the original model Π.

4.1 Replacing an Action in a State
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ used in state s,
rather than the operator n with parameters χ′? where
o 6= n or χ 6= χ′

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp2wp5) used,
rather than (goto waypoint kenny wp2wp4)?”

They might ask this because a goal of the problem is to visit
wp4. As the robot visits wp5 from wp3 later in the plan,
it might make sense to the user for the robot to visit wp4
earlier, as wp5 will be visited at a later point.

To generate the HPlan, a compilation is formed such that
the ground action b = ground(n, χ′) appears in the plan in
place of the action ai = ground(o, χ). Given the example
above b = ground(goto waypoint, {kenny,wp2, wp4}),
and ai = ground(goto waypoint, {kenny,wp2, wp5}).
Given a plan:

φ = 〈a1, a2, . . . , an〉
The ground action ai at state s is replaced with b, which is
executed, resulting in state I ′, which becomes the new ini-
tial state in the HModel. A time window is created for each
durative action that is still executing in state s. These model
the end effects of the concurrent actions. A plan is then gen-
erated from this new state with these new time windows for
the original goal, which gives us the plan:

φ′ = 〈a′1, a′2, . . . , a′n〉
The HPlan is then the initial actions of the original plan φ
concatenated with b and the new plan φ′:

〈a1, a2, . . . , ai−1, b, a′1, a′2, . . . , a′n〉
Specifically, the HModel Π′ is:

Π′ = 〈〈Ps, V s,As, arity〉, 〈Os, I ′, G,W ∪ C〉〉
where:

• I ′ is the final state obtained by executing1

〈a1, a2, . . . , ai−1, b〉 from state I .
• C is a set of time windows wx, for each durative action aj

that is still executing in the state I . For each such action,
wx specifies that the end effects of that action will be-
come true at the time point at which the action is sched-
uled to complete. Specifically: wx = 〈Dispatch(aj) +
Dur(aj)−Dispatch(b), inf, u〉 where u = Eff (aj)

−
a ∪

Eff (aj)
+
a ∪ Eff (aj)

n
a.

In the case in which an action aj that is executing in state
I ′ has an overall condition that is violated, this is detected
when the plan is validated against the original model. As an
example, given the user question above, the new initial state
I ′ from the running example is shown below:

(:init
(robot at kenny wp4) (visited wp2)
(visited wp1) (visited wp4)
(connected wp0 wp2) (connected wp0 wp4)
(connected wp1 wp0) (connected wp1 wp2)
...)
(:goal (and (visited wp1)(visited wp2)
(visited wp3)(visited wp4) (visited wp5)
)))

This captures the state I ′, resulting from executing the
actions a1, a2, a3, and b:
0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wp1) [2.00]
3.45: (goto_waypoint kenny wp1 wp2) [2.00]
5.45: (goto_waypoint kenny wp2 wp4) [2.00]

In this state the robot has visited the waypoints wp2, wp1,
and wp4, and is currently at wp4. This new initial state is
then used to plan for the original goals to get the plan φ′,
which, along with b and φ, gives the HPlan. However, the
problem is unsolvable from this state as there are no con-
nections from wp4 to any other waypoint. By applying the
user’s constraint, and showing there are no more applicable
actions, it answers the above question: “because by doing
this there is no way to complete the goals of the problem”.

This compilation keeps the position of the replaced ac-
tion in the plan, however, it may not be optimal. This is be-
cause we are only re-planning after the inserted action has
been performed. The first half of the plan, because it was
originally planned to support a different set of actions, may
now be inefficient, as shown by Borgo, Cashmore, and Mag-
azzeni (2018).

If the user instead wishes to replace the action without
necessarily retaining its position in the plan, then the fol-
lowing constraints on adding and removing an action from
the plan can be applied iteratively, as mentioned previously.

4.2 Add an Action to the Plan
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ not used,
rather than being used?
1We use VAL to validate this execution. We use the add and

delete effects of each action, at each happening (provided by VAL),
up to the replacement action to compute I ′.

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp2wp4) not used,
rather than being used?”

They might ask this because a goal of the problem is to visit
wp4. As the robot is at wp2 early in the plan, and you can
visit wp4 from wp2, it might make sense to the user for the
robot to visit wp4 at that time.

To generate the HPlan, a compilation is formed such that
the action a = ground(o, χ) must be applied for the plan
to be valid. The compilation introduces a new predicate
has done a, which represents which actions have been ap-
plied. Using this, the goal is extended to include that the user
suggested action has been applied. The HModel Π′ is:

Π′ = 〈〈Ps′, V s,As′, arity′〉, 〈Os, I,G′,W 〉〉

where

• Ps′ = Ps ∪ {has done a}
• As′ = {o′} ∪As \ {o}
• arity′(x) = arity(x), ∀x ∈ arity
• arity′(has done a) = arity′(o′) = arity(o)

• G′ = G ∪ {ground(has done a, χ)}
where the new operator o′ extends o with the add effect
has done a with corresponding parameters, i.e.

Eff +
a (o′) = Eff +

a (o) ∪ {has done a}

For example, given the user question above, the opera-
tor goto waypoint from the running example is extended to
goto waypoint′ with the additional add effect has done a:

(:durative-action goto_waypoint’
:parameters (?v - robot

?from ?to - waypoint)
:duration(= ?duration

(travel_time ?from ?to))
:condition (at start (robot_at ?v ?from)

(over all (connected ?from ?to))
:effect (and (at end (visited ?to))

(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to))
(at end (has done goto waypoint’ ?v ?from

?to)))))

and the goal is extended to include the proposition:
(has done goto waypoint kenny wp2wp4).

4.3 Remove a Specific Grounded Action
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ used, rather
than not being used?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp1wp2) used,
rather than not being used?”

A user might ask this because the robot has already sat-
isfied the goal to visit wp2 before this point with the action
(goto waypoint kenny wp0wp2). The user might think the
second action (goto waypoint kenny wp1wp2) seems re-
dundant.

The specifics of the compilation is similar to the compi-
lation in Section 4.2. The HModel is extended to introduce
a new predicate not done action which represents actions
that have not yet been performed. The operator o is extended
with the new predicate as an additional delete effect. The ini-
tial state and goal are then extended to include the user se-
lected grounding of not done action. Now, when the user
selected action is performed it deletes the new goal and so
invalidates the plan. This ensures the user suggested action
is not performed.

For example, given the user question above, an
HPlan is generated that does not include the action
(goto waypoint kenny wp1wp2), and is shown in Fig-
ure 6.

4.4 Forbid an Action Outside a Time Window
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ used outside
of time lb < t < ub, rather than only being allowed
within this time window?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp0wp4) used out-
side of times 0 and 2, rather than being restricted to
that time window?”

A user can ask this because the action
(goto waypoint kenny wp0wp4) is used at the end
of the plan, the robot starts at wp0 and must visit wp4 to
satisfy a goal. The user might think that satisfying this goal
earlier in the plan will free up time for the robot to complete
the other goals.

To generate the HPlan, the planning model is compiled
such that the ground action a = ground(o, χ) can only be
used between times lb and ub. To do this, the original op-
erator o is replaced with two operators oa and o¬a, which
extend o with extra constraints.

Operator o¬a replaces the original operator o for all
other actions ground(o, χ′), where χ′ 6= χ. The action
ground(o¬a, χ) cannot be used (this is enforced using
the compilation for forbidding an action described in Sec-
tion 4.3). Operator oa acts as the operator o specifically for
the action a = ground(o, χ), which has an added constraint
that it can only be performed between lb and ub. Specifically,
the HModel Π′ is:

Π′ = 〈〈Ps′, V s,As′, arity′〉, 〈Os, I ′, G′,W ′〉〉

where:

• Ps′ = Ps ∪ {can do a, not done a}
• As′ = {oa, o¬a} ∪As \ {o}
• arity′(x) = arity(x),∀x ∈ arity

• arity′(can do a) = arity′(not done a) =
arity′(oa) = arity′(o¬a) = arity(o)

• I ′ = I ∪ {ground(not done a, χ)}
• G′ = G ∪ {ground(not done a, χ)}
• W ′ = W ∪ {〈lb, ub, ground(can do a, χ)〉}
where the new operators o¬a and oa extend o with the delete
effect not done a and the precondition can do a, respec-
tively. i.e:

Eff −` (o¬a) = Eff −` (o) ∪ {not done a}
Pre`(oa) = Pre`(o) ∪ {can do a}

As the proposition ground(can do a, χ) must be true for
ground(oa, χ) to be performed, this ensures that the action
a can only be performed within the times lb and ub. Other
actions from the same operator can still be applied at any
time using the new operator o¬a. As in Section 4.3 we make
sure the ground action ground(o¬a, χ) can never appear in
the plan.

For example, given the user question above, the operator
goto waypoint from Figure 2 is extended to o¬a and oa as
shown below:

(:durative-action goto_waypoint_nota
:parameters (?v - robot

?from ?to - waypoint)
:duration(= ?duration
(travel_time ?from ?to))

:condition (and
(at start (robot_at ?v ?from))
(over all (connected ?from ?to)))

:effect (and
(at end (visited ?to))
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to))
(at start (not (not done goto waypoint ?v

?from ?to)))))

(:durative-action goto_waypoint_a
:parameters (?v - robot

?from ?to - waypoint)
:duration(= ?duration

(travel_time ?from ?to))
:condition (and (at start

(can do goto waypoint ?v ?from ?to))
(at start (robot_at ?v ?from))
(over all (connected ?from ?to)))

:effect (and (at end (visited ?to))
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to))))

The initial state is extended to include the proposition
(not done goto waypoint kenny wp0wp4) and the time
window 〈0, 2, (can do goto waypoint kenny wp0wp4)〉.
This time window enforces that the proposition
(can do goto waypoint kenny wp0wp4) is true between
times 0 and 2. The resulting HPlan is:
0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto_waypoint kenny wp2 wp1) [2.00]
3.45: (goto_waypoint kenny wp1 wp2) [2.00]
5.45: (goto_waypoint kenny wp2 wp5) [2.00]
7.45: (goto_waypoint kenny wp5 wp3) [4.69]

12.14: (goto_waypoint kenny wp3 wp5) [4.69]
16.83: (goto_waypoint kenny wp5 wp2) [2.00]
18.84: (goto_waypoint kenny wp2 wp4) [2.98]

Following the user suggestion, the action is no longer ap-
plied outside of the time window, and in fact does not appear
in the plan at all.

4.5 Add an Action Within a Time Window
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ not used at
time lb < t < ub, rather than being used in this time
window?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp0wp4) not used
between times 0 and 2, rather than being used in this
time window?”

The HPlan given in Section 4.4 shows the user that there
is a better plan which does not have the action in this time
window. However, the user may only be satisfied once they
have seen a plan where the action is performed in their given
time window. To allow this the action may have to appear in
other parts of the plan as well.

This constraint differs from Section 4.4 in two ways: first
the action is now forced to be applied in the time window,
and second the action can be applied at other times in the
plan. This constraint is useful in cases such as a robot that
has a fuel level. As fuel is depleted when travelling between
waypoints, the robot must refuel, possibly more than once.
The user might ask “why does the robot not refuel between
the times x and y (as well as the other times it refuels)?”.

To generate the HPlan, the planning model is compiled
such that the ground action a = ground(o, χ) is forced to
be used between times lb and ub, but can also appear at any
other time. This is done using a combination of the com-
pilation in Section 4.2 and a variation of the compilation
in Section 4.4. Simply, the former ensures that new action
ground(oa, χ) must appear in the plan, and the latter en-
sures that the action can only be applied within the time
window. The variation of the latter compilation is that the
operator o¬a is not included, and instead the original oper-
ator is kept in the domain. This allows the original action
a = ground(o, χ) to be applied at other times in the plan.
Given this, the HModel Π′ is:

Π′ = 〈〈Ps′, V s,As′, arity′〉, 〈Os, I,G′,W ′〉〉
where:
• Ps′ = Ps ∪ {can do a, has done a}
• As′ = {oa} ∪As
• arity′(x) = arity(x),∀x ∈ arity
• arity′(can do a) = arity′(has done a)

= arity′(oa) = arity(o)

• G′ = G ∪ {ground(has done a, χ)}
• W ′ = W ∪ {〈lb, ub, ground(can do a, χ)〉}
As wp4 is a dead end there is no valid HPlan following this
suggestion.

4.6 Delay/Advance an Action
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ used at time
t, rather than at least some duration t′ after/before t?

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp2wp5) used at
time 5.45, rather than at least 4 seconds earlier?”
A user might ask this question in general because they

expected an action to appear earlier or later in a plan. This
could happen for a variety of reasons. In domains with re-
sources that are depleted by specific actions, and are replen-
ished by others, such as fuel for vehicles, these questions
may arise often. A user might want an explanation for why a
vehicle was refueled earlier or later than what was expected.
In this case the refuel action can be delayed or advanced to
answer this question.

For this particular example the user might want the action
(goto waypoint kenny wp2wp5) to be advanced nearer
the start of the plan. The user might see that in the origi-
nal plan the robot goes from wp2 to wp1 at time 1.45 and
then instantly goes back again. The user might think that a
better action would be to go from wp2 to wp5 before this.
The user might notice that wp5 is connected to more way-
points than wp1. Having these extra options might prevent
redundant actions that revisit waypoints.

To generate the HPlan, the planning model is compiled
such that the ground action a = ground(o, χ) is forced to
be used in time window w which is at least t′ before/after
t. This compilation is an example of a combination of two
other compilations: adding an action (in Section 4.2) and for-
bidding the action outside of a time window (in Section 4.4).
The latter enforces that the action can only be applied within
the user specified time window, while the former enforces
that the action must be applied. The HModel Π′ is:

Π′ = 〈〈Ps′, V s,As′, arity′〉, 〈Os, I ′, G′,W ′〉〉
where:
• Ps′ = Ps ∪ {can do a, not done a, has done a}
• As′ = {oa, o¬a} ∪As \ {o}
• arity′(x) = arity(x),∀x ∈ arity
• arity′(can do a) = arity′(not done a) =
arity′(has done a) = arity′(oa) =
arity′(o¬a) = arity(o)

• I ′ = I ∪ {ground(not done a, χ)}

• G′ = G ∪ { ground(not done a, χ),
ground(has done a, χ)

}

• W ′ = W∪
{
before : 〈0, tReal, ground(can do a, χ)〉
after : 〈tReal, inf, ground(can do a, χ)〉

where the new operators oa and o¬a both extend o. The latter
with the delete effect not done a, while oa extends o with
the precondition can do a and add effect has done a; i.e.:

Eff −a (o¬a) = Eff −a (o) ∪ {not done a}
Pre↔(oa) = Pre↔(o) ∪ {can do a}
Eff +
a (oa) = Eff +

a (o) ∪ {has done a}

This ensures that the ground action a = ground(oa, χ)
must be present in the plan between the times 0 and tReal,
or tReal and inf , depending on the user question, and be-
tween those times only. In addition, the user selected action
is forced to be performed using the same approach as in Sec-
tion 4.2. Given the user question above, the HPlan is:

0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (goto waypoint a kenny wp2 wp5) [2.00]
3.45: (goto_waypoint kenny wp5 wp3) [4.68]
8.13: (goto_waypoint kenny wp3 wp5) [4.68]
12.81: (goto_waypoint kenny wp5 wp2) [2.00]
14.81: (goto_waypoint kenny wp2 wp1) [2.00]
16.81: (goto_waypoint kenny wp1 wp0) [2.00]
18.81: (goto_waypoint kenny wp0 wp4) [2.00]

4.7 Reordering Actions
Given a plan φ, a formal question Q is asked of the form:

Why is the operator o with parameters χ used before
(after) the operator n with parameters χ′, rather than
after (before)? where o 6= n or χ 6= χ′

For example, given the example plan in Figure 5 the user
might ask:

“Why is (goto waypoint kenny wp2wp1) used be-
fore (goto waypoint kenny wp2wp5), rather than af-
ter?”

A user might ask this because there are more connections
from wp5 than wp2. The user might think that if the robot
has more choice of where to move to, the planner could
make a better choice, giving a more efficient plan.

The compilation to the HModel is performed in the fol-
lowing way. First, a directed-acyclic-graph (DAG) 〈N,E〉 is
built to represent each ordering between actions suggested
by the user. For example the ordering of Q is a ≺ b where
a = ground(o, χ) and b = ground(n, χ′).

This DAG is then encoded into the model Π to create Π′.
For each edge (a, b) ∈ E two new predicates are added:
orderedab representing that an edge exists between a and
b in the DAG, and traversedab representing that the edge
between actions a and b has been traversed.

For each node representing a ground action a ∈ N , the
action is disallowed using the compilation from Section 4.3.
Also, for each such action a new operator oa is added to the
domain, with the same functionality of the original operator
o. The arity of the new operator, arity(oa) is the combined
arity of the original operator plus the arity of all of a’s sink
nodes. Specifically, the HModel Π′ is:

Π′ = 〈〈Ps′, V s,As′, arity′〉, 〈Os, I ′, G′,W 〉〉

where:
• Ps′ = Ps∪ {orderedab} ∪ {traversedab}, ∀(a, b) ∈ E
• As′ = {oa} ∪As, ∀a ∈ N
• arity′(x) = arity(x),∀x ∈ arity
• arity′(oa) = arity(o) +

∑
(a,b)∈E arity(b),∀a ∈ N

• arity′(orderedab) = arity(a) + arity(b),∀(a, b) ∈ E
• arity′(traversedab) = arity(b),∀(a, b) ∈ E

• I ′ = I∪ground(orderedab, χ+χ′), ∀(a, b) ∈ E, where
χ and χ′ are the parameters of a and b, respectively.

In the above, we abuse the arity notation to specify the
arity of an action to mean the arity of the operator from
which it was ground; e.g. arity(a) = arity(o) where a =
ground(o, χ).

Each new operator oa extends owith the precondition that
all incoming edges must have been traversed, i.e. the source
node has been performed. The effects are extended to add
that its outgoing edges have been traversed. That is:

Pre`(oa) = Pre`(o) ∪ {orderedab ∈ Ps′,∀b}
∪ {traversedca ∈ Ps′,∀c}

Eff +
a (oa) = Eff +

a (o) ∪ {traversedab ∈ Ps′,∀b}
This ensures that the ordering the user has selected is

maintained within the HPlan.
As the operator oa has a combined arity of the orig-

inal operator plus the arity of all of a’s sink nodes,
there exists a large set of possible ground actions. How-
ever, for all b ∈ N , orderedab is a precondition of oa;
and for each edge (a, b) ∈ E the ground proposition
ground(orderedab, χ, χ

′) is added to the initial state to rep-
resent that the edge exists in the DAG. Therefore, the only
grounding of the operator that can be performed is the action
with parameters χ + χ′. This drastically reduces the size of
the search space.

For example given the user question above, two new op-
erators node goto waypoint kenny wp2 wp5 (shown in
Figure 7) and node goto waypoint kenny wp2 wp1 are
added to the domain. These extend operator goto waypoint
from Figure 2 as described above. The HPlan generated is
shown below:
(:durative-action

node_goto_waypoint_kenny_wp2_wp5
:parameters (?v1 ?v2 - robot

?from1 ?to1 ?from2 ?to2 - waypoint)
:duration (= ?duration

(travel_time ?from1 ?to1))
:condition (and (at start

(robot_at ?v1 ?from1))
(over all (connected ?from ?to))
(at start (ordered wp2 wp5 wp2 wp1 ?v1

?v2 ?from1 ?to1 ?from2 ?to2)))
:effect (and (at end (visited ?to1))

(at start (not (robot_at ?v1 ?from1)))
(at end (robot_at ?v1 ?to1))
(at end (traversed v2 from2 to2 ?v2

?from2 ?to2))))

Figure 7: An operator added to the original domain to cap-
ture an ordering constraint between actions. The operator ex-
tends the original goto waypoint operator.

0.00: (goto_waypoint kenny wp0 wp2) [1.45]
1.45: (node goto waypoint kenny wp2 wp5 kenny
kenny wp2 wp5 wp2 wp1) [2.00]
3.45: (goto_waypoint kenny wp5 wp3) [4.68]
8.13: (goto_waypoint kenny wp3 wp5) [4.68]
12.81: (goto_waypoint kenny wp5 wp2) [2.00]
14.81: (node goto waypoint kenny wp2 wp1 kenny
wp2 wp1) [2.00]
16.81: (goto_waypoint kenny wp1 wp0) [2.00]
18.81: (goto_waypoint kenny wp0 wp4) [2.00]

5 Conclusion
In this paper we have presented an approach to compiling a
set of formal contrastive questions into domain independent
constraints. These are then used within the XAI paradigm
to provide explanations. We have described how these com-
pilations form a part of a series of stages which start with
a user question and end with an explanation. This paper
formalises and provides examples of these compilations in
PDDL 2.1 for temporal and numeric domains and planners.

We have defined a series of questions which we believe
a user may have about a plan in a PDDL2.1 setting. These
questions cover a large set of scenarios, and can be stacked
to create new interesting constraints which may answer a
much richer set of questions.

We acknowledge that the questions we provide compila-
tions for do not cover the full set of contrastive questions one
may have about a plan. For example the question, “Why is
the operator o with parameters χ used at time lb < t < ub,
rather than not being used in this time window?”, can be an-
swered using a variant of Section 4.5. For future work we
plan to investigate which compilations will form an atomic
set whose elements can be stacked to cover the full set of
possible contrastive questions. We also acknowledge that the
compilations we have formalised may have equivalent com-
pilations. However, the ones we have described have proven
successful for explanations.

In future work, we will look to extend this work in several
ways. While we define how to calculate plans for contrastive
cases, we do not take full advantage of contrastive explana-
tions by explaining the difference between two plans (Miller
2018). In particular, we will look to extend the presentation
beyond just plans into showing the difference between two
causal chains as well.

We will explore contrastive explanations with preferences
in PDDL 3 (Gerevini and Long 2005).

We will look at producing a language for expressing ques-
tions and constraints on plans. LTL will likely play a role
in defining the semantics of any such language. Additional
concepts concerning plan structure, such as the ability to
specify that an action is part of the causal support for a goal
or sub-goal, will be needed. As it stands when we add a con-
straint to include an action, the constraint may be satisfied
in trivial ways not relevant to answering the users question.
The action may be redundant, or undone in the HPlan as de-
scribed in (Fox, Long, and Magazzeni 2017). In this case
the explanation may not be deemed satisfactory. These ad-
ditional concepts will help solve this problem, as well as al-
lowing users to ask more expressive questions such as, “Why
did you use action A rather than action B for achieving P?”.

Finally, we will provide functional and human-
behavioural evaluations of our explanations, to assess
their effectiveness. To make sure they are both satisfactory
from a user perspective, and that they provide actionable
insight into the plan.

Acknowledgements This work was partially supported by
Innovate UK grant 133549: Intelligent Situational Aware-
ness Platform, and by EPSRC grant EP/R033722/1: Trust in
Human-Machine Partnerships.

References
Borgo, R.; Cashmore, M.; and Magazzeni, D. 2018. Towards
providing explanations for AI planner decisions. IJCAI-18
Workshop on Explainable AI.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? legibility? pre-
dictability? transparency? privacy? security? the emerging
landscape of interpretable agent behavior. In ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelliigence Research 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explain-
able planning. IJCAI-17 workshop on Explainable AI
abs/1709.10256.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in pddl3 - the language of the fifth international
planning competition. Technical report.
Haynes, S. R.; Cohen, M. A.; and Ritter, F. E. 2009. Designs
for explaining intelligent agents. International Journal of
Human-Computer Studies 67(1):90 – 110.
Lewis, D. 1986. Causal explanation. In Lewis, D., ed.,
Philosophical Papers Vol. Ii. Oxford University Press. 214–
240.
Lim, B. Y.; Dey, A. K.; and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
’09, 2119–2128.
Lipton, P. 1990. Contrastive explanation. Royal Institute of
Philosophy Supplement 27:247266.
Lipton, Z. C. 2016. The mythos of model interpretability.
CoRR abs/1606.03490.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. CoRR abs/1811.03163.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence 267:1–
38.
Mueller, S. T.; Hoffman, R. R.; Clancey, W. J.; Emrey, A.;
and Klein, G. 2019. Explanation in human-ai systems: A lit-
erature meta-review, synopsis of key ideas and publications,
and bibliography for explainable AI. CoRR abs/1902.01876.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”why
should I trust you?”: Explaining the predictions of any clas-
sifier. CoRR abs/1602.04938.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users —
a formal approach for generating sound explanations. In
ICAPS.
Smith, D. 2012. Planning as an iterative process. In AAAI.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H.; and Kambhampati, S. 2017. Plan explicability
and predictability for robot task planning. In ICRA.

Domain-independent Plan Intervention When Users Unwittingly Facilitate Attacks

Sachini Weerawardhana and Darrell Whitley1 Mark Roberts2
1Computer Science Department, Colorado State University, Fort Collins, CO, USA | {sachini, whitley}@cs.colostate.edu

2The U.S. Naval Research Laboratory, Code 5514; Washington, DC, USA | mark.roberts@nrl.navy.mil

Abstract

In competitive situations, agents may take actions to achieve
their goals that unwittingly facilitate an opponent’s goals. We
consider a domain where three agents operate: (1) a user (hu-
man), (2) an attacker (human or a software) agent and (3) an
observer (a software) agent. The user and the attacker com-
pete to achieve different goals. When there is a disparity in
the domain knowledge the user and the attacker possess, the
attacker may use the user’s unfamiliarity with the domain to
its advantage and further its own goal. In this situation, the
observer, whose goal is to support the user may need to in-
tervene, and this intervention needs to occur online, on-time
and be accurate. We formalize the online plan intervention
problem and propose a solution that uses a decision tree clas-
sifier to identify intervention points in situations where agents
unwittingly facilitate an opponent’s goal. We trained a clas-
sifier using domain-independent features extracted from the
observer’s decision space to evaluate the “criticality” of the
current state. The trained model is then used in an online set-
ting on IPC benchmarks to identify observations that warrant
intervention. Our contributions lay a foundation for further
work in the area of deciding when to intervene.

1 Introduction
When an agent is executing a plan to achieve some goal,
it’s progress may be challenged by unforeseen changes such
as an unexpected modification to the environment or an ad-
versary subverting the agent’s goal. In these situations, a
passive observer intervening to help the agent reach it’s in-
tended goal will be beneficial. Intervention is different from
the typical plan recognition problem because we assume
the observed agent pursues desirable goals while avoiding
undesirable states. Therefore, the observer must (1) moni-
tor actions/state unobtrusively to predict trajectories of the
observed agent (keyhole recognition) and (2) assist the ob-
served agent to safely complete the intended task or block
the current step if unsafe. Consider a user checking email
on a computer. An attacker who wants to steal the user’s
password makes several approaches: sending an email with
a link to a phishing website and sending a PDF file attach-
ment embedded with a keylogger. The user, despite being
unaware of the attacker’s plan, would like to complete the
task of checking email safely and avoid the attacker’s goal.
Through learning, our observer can recognize risky actions
the user may execute in the environment and ensure safety.

The decision of when to intervene must be made judi-
cially. Intervening too early may lead to wasted effort chas-
ing down false positives, helpful warnings being ignored as
a nuisances, or leaking information for the next attack. In-
tervening too late may result in the undesirable state. Fur-
ther, we are interested in assisting a human user with dif-
ferent skill levels, who would benefit more from customized
intervention. To this end, we need to identify actions that
warrant intervention over three different time horizons: (1)
critical action, which if unchecked will definitely trigger the
undesirable state, (2) mitigating action, which gives the user
some time to react because the threat is not imminent and
(3) preventing actions, which allows for long term planning
to help the user avoid threats. Based on the time horizon we
are current in, we can then plan to correct course accord-
ingly. In this work we focus on identifying the first horizon.
Intervention is useful in both online settings, where undesir-
able states may arrive incrementally and in offline settings
where observations are available prior to intervention.

In this paper, we model online intervention in a competi-
tive environment where three agents operate: (1) a user (hu-
man), (2) an attacker (human or a software) agent and (3)
an observer (a software) agent who will intervene the user.
The observer passively monitors the user and the attacker
competing to achieve different goals. The attacker attempts
(both actively and passively) to leverage the progress made
by a user to achieve its own goal. The attacker may mask
domain knowledge available to the user to expand the attack
vector and increase the likelihood of a successfull attack.
The user is pursuing a desirable goal while avoiding unde-
sirable states. Using domain-independant features, we train
a decision tree classifier to help the observer decide whether
to intervene. A variation of the relaxed plan graph (Blum
and Furst 1997) models the desirable, undesirable and neu-
tral states that are reachable at different depths. From the
graph, we extract several domain independent features: risk,
desirability, distances remaining to desirable goal and unde-
sirable states and active landmarks percentage.

We train a classifier to recognize an observation as a inter-
vention point and evaluate the learned model on previously
unseen observation traces to assess the accuracy. Further-
more, the domain independent features used in the classifier
offer a mechanism to explain why the intervention occurred.
In real-time, making the decision to intervene for each ob-

servation may be costly. We examine how the observer can
establish a wait time without compromising accuracy.

The contributions of this paper include: (1) formalizing
the online intervention problem as an intervention graph
that extends the planning graph, (2) introducing domain-
independent features that estimate the criticality of the cur-
rent state to cause a known undesirable state, (3) presenting
an approach that learns to classify an observation as inter-
vention or not, (4) incorporating salient features that are bet-
ter predictors of intervention to generate explanations, and
(5) showing this approach works well with benchmarks.

2 Example
Before we formalize the problem, we present examples for
two cases of the online intervention: (1) the attacker is ac-
tively trying to make the user reach the undesirable state by
leveraging the user’s progress and (2) the passive attacker
introduces an undesirable state to the environment without
the user’s knowledge (i.e., a trap), where attacker masks the
location of the trap and exploits the user’s unfamiliarity with
the domain to make the user reach the undesirable state. In
both cases, the observer monitors the attacker and the users’
actions. The user plans for a desirable goal state, Gd. Given
the unexpected modification to the domain model, executing
this plan may likely cause the user to reach the undesirable
state (Gu). The observer is assumed to be familiar with the
domain (regardless of attacker’s attempts to mask informa-
tion to the user) and has knowledge about commonly occur-
ring goals such as Gd and Gu. The user would like to be
interrupted if some action will trigger Gu.

Active Attacker: We use the IPC block-words domain
(Gupta and Nau 1992) to illustrate the active attacker’s case.
The observer is watching the user stacking blocks to spell a
word. The domain contains 4 blocks: T, B, A, D. Figure 1
shows the undesirable state developing from initial state I .
Gd equals the word TAD, while Gu equals the word BAD.
The user can not recognize block B (indicated by dotted
lines), which prevents the user from identifying states re-
sulting from performing operations on B such as stack and
pick up, and therefore fail to circumventGu on his own. The
attacker will use block B to defeat the user and achieve Gu.

In the initial state (I), all blocks are on the table. The
user’s arm (solid line) and the attacker’s arm (dotted line)
are empty. In the next sequence of events, the observer sees
that the user has picked up block A (S1) and stacked A on D
(S2). Consider two alternative timelines T1 and T2 stemming
from S2. In T1, the observer sees that the user has picked up
T and the attacker has also picked up B. The next state shows
that the user has stacked T on A to spell the word TAD and
reachedGd successfully. In timeline T2, the attacker has suc-
ceeded in reaching Gu by stacking B on A before the user
stacked T on A, leveraging the user’s progress.

Passive Attacker: This case considers the 3x3 grid world
domain (McDermott 1999) shown in Figure 2. The observer
watches the user (white circle) navigating from a start point
(0,0) on the grid to reach Gd point (3,3) in 1-step actions.
When executing a plan to reach Gd, the user would like to
avoid the trap at point X (2,3), Gu but will not be able to

D A B
PICKUP A

T D B

A
D

B

I

Gd

S1

T1
T

A

T
A
D

BT

T D B
S2

ASTACK A D

STACK T A

A
D

B

Gu

T2

T
A
D

BT

STACK B A

Figure 1: Reaching Gu with an active attacker

1 2 30

1

2

3
Gu Gd

1 2 30

1

2

3
Gu Gd

MOVE 0-0 1-0

1 2 3

Gu Gd

1

2

3

MOVE 2-2 2-3
I S1

1 2 3

Gu Gd

1

2

3

T2

1 2 3

Gu Gd

1

2

3

T1

1 2 3

Gu Gd

1

2

3

MOVE 3-2 3-3...

...

Figure 2: Reaching Gu with passive attacker

do so unless the observer interrupted. Let us assume the ob-
server sees the user’s action resulting in state S1. Although
the move indicates that the user is moving toward Gu and
Gd, interruption is too early. In two alternative timelines
T1 (top right) and T2 (bottom), the observer sees different
moves. In T1 the user has reached Gd while avoiding Gu, in
which case the observer need not interrupt. However, in T2
the user has reached Gu, in which case it would have been
helpful if the user was blocked before moving to (2,3).

3 The Intervention Problem
Our formulation of the intervention problem makes several
assumptions about the three actors. (1) Observer: interven-
tion decisions are made in an online setting for each observa-
tion that appears incrementally and include actions executed
by the attacker or the user. The goals Gd or Gu are known
but the plans to reachGd or Gu are hidden. The domains for
which plan intervention problem is defined are discrete and
all actions are assumed to be of unit cost. The observer has
full observability in the domain and the environment is de-
terministic. Therefore, it can determine the actions that are
immediately applicable in the current state. (2) User: Fol-
lows a plan to reach Gd, but may reach Gu unwittingly. Gu
is hidden, but would like the observer’s help to avoid Gu.
The user does not have full observability of the domain or
the attacker’s actions. (3) Attacker: Follows a plan to reach
Gu. The attacker has full observability of the domain and
the user’s actions. Given these assumptions, the observer as-
sesses the state after each observation. This requires the ob-
server to hypothesize about possible interesting trajectories
from current state and evaluate each trajectory in terms of
their likelihood to cause Gu.

3.1 Definitions
Following STRIPS (Fikes and Nilsson 1971), we define a
planning problem as a tuple P = 〈F,A, I,G〉where F is the

set of fluents, I ⊆ F is the initial state,G ⊆ F represents the
set of goal states and A is the set of actions. Each action a ∈
A is a triple a = 〈Pre(a), Add(a), Del(a)〉 that consists
of preconditions, add and delete effects respectively, where
Pre(a), Add(a), Del(a) are all subsets of F . An action a
is applicable in a state s if preconditions of a are true in s;
pre(a) ∈ s. If an action a is executed in state s, it results in
a new state s′ = (s \ del(a) ∪ add(a)). The solution to P is
a plan π = {a1, . . . , ak} of length k that modifies I into G
by execution of actions a1, . . . , ak.

The plan recognition problem defined by Ramirez and
Geffner (2010) is a triple T = 〈D,G, O〉 where D =
〈F,A, I〉 is a planning domain, G is the set of goals, and
G ⊆ F . An observation sequence O = o1, . . . , om are ac-
tions oi ∈ A, i ∈ [1,m]. A solution to the plan recognition
problem is a subset of goals G ∈ G for which an optimal
plan P [G] satisfying O is produced.

Similarly, the plan intervention problem (I) also uses ob-
servations of actions. However, instead of using information
gleaned from the observation trace to find the most likely
plans (and goals), the intervention problem aims to assess
the current state for it’s ability to cause Gu and identify
whether or not the user needs to be blocked from making
further progress. Unlike Ramirez and Geffeners’ approach,
the observations used in our solution are not noisy nor do
they contain missing actions. This will be addressed in fu-
ture work.

Plan intervention problem I = 〈D,O,Gu, Gd,M〉
consists of a planning domainD and a sequence of observed
actions O, a set of undesirable states Gu ⊆ F , a set of desir-
able states Gd ⊆ F (Gu 6= Gd), and a decision tree classi-
fier modelM that combines a vector of domain-independant
features to classify an obervation as requiring intervention
or not. The extension to typical plan/goal recognition comes
from the domain-independent feature vector, which will be
discussed in section 3.3. A solution to I is a vector of deci-
sion points corresponding to actions inO indicating whether
each action was identified as requiring intervention.

3.2 Modelling the Intervention Decision Space
To assess the criticality of the current state to cause Gu, the
observer enumerates action sequences that will transform
the current state to Gd. These action sequences and interme-
diate states make up the observer’s decision space, which is
a single-root directed acyclic connected graph S = 〈V,E〉,
where V is the set of vertices denoting possible states the
user could be in until Gd is reached, and E is the set of
edges representing actions from A. We refer to this graph as
the intervention graph. The root of the intervention graph in-
dicates the current state. Leaves of the graph are goal states
(i.e., Gu and Gd). A path from root of the tree to Gu repre-
sents a candidate attack plan, while a path from root to leaf
node containing Gd represents a desirable plan.

Figure 3 illustrates the observer’s decision space for un-
observed actions extending from state S1 in Figure 1. Some
subtrees are hidden for simplicity. Given the initial state
where all 4 blocks are on the table, the observer expects the
next action to be one in the set (PICK-UP {T, D, A, B}),
but B is hidden from the user. The attacker can execute any

A BDT

A
BDT

A BD
T

A B
D

T

A
BDT

A
BDT

A
BD

T

A B
DT

A
B

D

T
A

B

D

T

A
B

D

T
A
B

D

T

Gu

Gd

A
B

DT

safe operations by user
but not goal oriented

Figure 3: Fragment of the decision space at state I for block-
words plan intervention example in Figure 1

A
T

D

B

A
B

D

T

B
A

D

T

D
A

B

T

(Active Attacker)

0 3 30

(Passive Attacker)

3

X X XGd Gd Gd3 3 3

(1) (2) (3) (4) (1) (2) (3)0 3

X
Gd3

(4)0

Figure 4: User achieving Gd amid attacker actions in inter-
vention examples in Section 2

of the 4 actions. Using the intervention graph, the observer
hypothesizes all possible action sequences that can be ob-
served in the future, that will lead to Gu (spell BAD) or
Gd (spell TAD). One such sequence (as shown in the fig-
ure) is: PICK-UP A → STACK A D → PICK-UP T →
STACK T A. At this point the user reachesGd. On the other
hand if the sequence was PICK-UP A→ STACK A D→
PICK-UP B→ STACK B A, with the last two actions ex-
ecuted by the attacker, the attacker achieves Gu.

Figure 4 illustrates how the user’s plans to reachGd could
fail in the presence of an active (left) or passive (right) at-
tacker. In the case of an active attacker, given the assump-
tion that the attacker does not backtrack to a previous state
and only leverages progress made thus far, it can make four
attempts to prevent the user from reaching Gu by inserting
the hidden block into the partially built stack. If the user
achieves goal states 1 or 4 the user wins despite the at-
tacker. If the observed actions indicate that the user is head-
ing toward one of these two states, then an interrupt is un-
warranted. State 3 is less ideal for the user but Gu is not
achieved. In state 2 the attacker has successfully reachedGu.
Observations leading to state 2 warrant interruption.

In the case of a passive attacker, the observer needs to
hypothesize about likely goals of the user given the current
state. Figure 4 (right) shows three of many such plans the
user may follow to reach Gd. Paths 1, 2 and 3 all result in
user going past the undesirable state (marked x), and at some
point in these observation sequences the user must be inter-
rupted before Gu is reached. In contrast, path 4 indicates a
safe path and must not generate an interrupt.

Algorithm 1 describes how the intervention graph is built.
The intervention graph is similar to the relaxed planning
graph (RPG), where each level consists of predicates that
have been made true and actions a ∈ A whose precondi-
tions are satisfied. Initially, before any observations have

been made, the current state (i.e., root of the tree) is set
to initial state I . Next, using the domain theory D, actions
a ∈ A whose preconditions are satisfied at current state are
added to the graph. Each action in level i spawn possible
states for level i+1. Calling the method recursively for each
state until Gd and Gu are added to some subsequent level
in the graph will generate a possible hypotheses space for
the observer. As a new observation arrives, the root of the
graph is changed to reflect the new state after the observa-
tion and subsequent layers are also modified to that effect.
Similar to the RPG, we omit delete effects during construc-
tion. Also construction terminates once Gd is reached. The
graph building algorithm does not allow adding backtrack-
ing actions because it will create a cycle.

Algorithm 1 Build Intervention Graph

Require: D, s, Gu, Gd
1: i = 0; si ← I
2: procedure EXPANDGRAPH(D, s,Gu, Gd)
3: if si |= Gu, Gd then return 〈V,E〉
4: else
5: for a ∈ A where Pre(a) ∈ si do
6: si+1 ← ((si \Del(a)) ∪Add(a))
7: if si+1 ≡ si then continue
8: v ← AddVertex (si+1)
9: e← AddEdge (s, si+1, a)

10: V ∪ {v} ;E ∪ {e}
11: ExpandGraph (D, si+1, Gu, Gd)

3.3 Domain Independent Features
We extract a set of features from the intervention graph that
help determine when to intervene. These features include:
Risk, Desirability, Distance to Gd, Distance to Gu and Per-
centage of active undesirable landmarks in current state. We
use these features to train a decision tree. Figure 5 illus-
trates a fragment of the intervention graph after PICK-UP
A. Following the subtree extending from action STACK A
D, both Gu and Gd can be reached. Unexpanded subtree T1
also contains instances where the user can reach Gd safely,
without reaching Gu. We will use Figure 5 as a running ex-
ample to discuss feature computation.

Risk (R) quantifies how likely the effects of current ob-
servation will lead to Gu. R is also coupled with the un-
certainty the observer has about the next observation. We
model the uncertainty as a uniform probability distribution
across the set of actions whose preconditions are satisfied
in current state. We define R as the posterior probability of
reaching Gu while the user is trying to achieve Gd. Given
the intervention graph, we extract paths from root to any leaf
containing the Gd, including the ones in which the user has
been subverted to reach Gu instead. By virtue of construc-
tion termination, Gd will always be a leaf. R is computed
for paths leading to state (2) in Figure 4 (left) because in
that state the attacker has won. In the passive attacker case
any path in the intervention graph that causes the user to
reach point X, before Gd is reached qualifies as candidates
to compute R.

T D B
A

1.0

T D B
A

T D B
A

T D B
A

T
D B
A

T D
BA

STACK B A
0.5

T D

B
A

STACK A T
0.33

STACK A B
0.33

STACK A D
0.33

PICKUP T
0.5

PICKUP B
0.5

T

D B
ASTACK T A

0.5

T1

T2

0.33

0.33

0.33

0.17

0.17

STACK T B
0.5

STACK B T
0.5

0.08

0.08

Figure 5: Fragment of the decision space after PICKUP A
has been observed for block-words example. Numbers under
each state and action indicate the probability. Subrees T1 and
T2 are not expanded for simplicity.

Let Πcandidates be the plans reaching Gd and let
|Πcandidates| = n. The plan set Πu contains action se-
quences that reach state Gu such that, Πu ⊆ Πcandidates,
|Πu| = m and (m <= n). We compute posterior proba-
bility of reaching Gu for a path π ∈ Πu, using chain rule
in probability as, Pπ =

∏k
j=1 P (αj |α1, α2, ..., αk−1), and

αj ∈ A and k is the length of path untilGu is reached. Then:

R =

{∑m
i=1 Pπi
m m > 0
0 m = 0

There are six action sequences the observer might observe
when the user is trying to achieve Gd (n = 6) and only one
of those six sequences will make the user reach Gu (m =
1). Since we assumed full observability for the observer, the
root of the tree (current state) is assigned the probability of
1.0. Then, actions that are immediately possible after current
state (STACK A B, STACK A D, STACK A T) are each
assigned probabilites following a uniform distribution across
the branching factor (0.33). Then for each applicable action
in the current state, the resulting state gets the probability of
(1.0 × 0.33 = 0.33). Similarly, we apply the chain rule of
probability for each following state and action level in the
graph until Gu first appears in the path. In this graph, Gu
appears two actions later and R = 0.08

1 = 0.08.
Desirability (D) measures the effect of the observed ac-

tion to help the user pursue the desirable goal safely. It
separates common harmless actions from avoidable ones
and connects the observations to knowledge of the goals
the user wants to achieve. Given Πcandidates as the set of
plans extracted from the intervention graph that reach Gd
and |Πcandidates| = n. The plan set Πd contains action se-
quences that reach state Gd without reaching Gu, Πd =
Πcandidates\Πu, we compute posterior probability of reach-
ing Gd without reaching Gu for a path π ∈ Πd, using chain
rule in probability as, Pπ =

∏k
j=1 P (αj |α1, α2, ..., αk−1),

and αj ∈ A and k is the length of path. Then:

D =

{∑n−m
i=1 Pπi
n−m n−m > 0

0 n−m = 0

In Figure 5, there are five instances where user achieved

Gd without reaching Gu (two in subree T1, three in the
expanded branch). Extracting paths from root to these
five instances, returns actions sequences the user may fol-
low to reach Gd safely (Πd). Following the same ap-
proach to assign probabilities for states and actions, D =
(0.08+0.08+0.08+0.04+0.04)

5 = 0.07. Computation for R and
D is similar for the passive attacker case.
R and D are based on probabilities indicating the confi-

dence the observer has about the next observation. We also
use simple distance measures: (1) distance to Gu (δu) and
(2) distance to Gd (δd). Both distances are measured in the
number of actions required to reach a state containing Gd or
Gu from root in the intervention graph.

Distance to Gu (δu) measures the distance to state Gu
from the current state in terms of the number of actions. As
with the computations of R and D, given Πcandidates is the
set of paths extracted from the intervention graph that reach
Gd and |Πcandidates| = n. The path set Πu contains action
sequences that reach state Gu such that, Πu ⊆ Πcandidates,
|Πu| = m and (m <= n). We count s, the number of the
edges (actions) before Gu is reached for each path π ∈ Πu

and δu is defined as the average of the distance values given
by the formula:

δu =

{∑m
i=1 si
m m > 0
−1 m = 0

In this formula,−1 indicates that the undesirable state is not
reachable from the current state. For the example problem
illustrated in Figure 5, δu = 3

1 = 3.
Distance to Gd (δd) measures the distance to Gd from

current state. The path set Πd contains action sequences that
reach Gd without reaching Gu, Πd = Πcandidates \ Πu, we
count t, the number of the edges where Gd is achieved with-
out reaching Gu for each path π ∈ Πd. Then, δd is defined
as the average of the distances given by the formula:

δd =

{∑n−m
i=1 ti
n−m n−m > 0
−1 n−m = 0

In this formula, −1 indicates that Gd can not be reached
safely from the current state. For the example problem illus-
trated in Figure 5, δd =

⌈
3+3+7+7+3

5

⌉
= 5. Both δu and δd

are computed similarly for the passive attacker case.
Percentage of active attack landmarks (Lac) captures

the criticality of current state toward contributing to Gu.
Landmarks (Hoffmann, Porteous, and Sebastia 2004) are
predicates (or actions) that must be true in every valid plan
for a planning problem. We used the algorithm in Hoffmann
et al. (2004) to extract fact landmarks for the planning prob-
lem P = 〈D,Gu〉. These landmarks are referred to as at-
tack landmarks because they establish predicates that must
be true to reach Gu. Landmark Generation Graph (LGG)
(Hoffmann, Porteous, and Sebastia 2004) for P for the ac-
tive attacker case is shown in Figure 6. Predicates (ON B
A), (ON A D) correspond toGu. Predicates that are grouped
must be made true together. When the observed actions ac-
tivate any attack landmarks, it signals that an undesirable
state is imminent. Landmarks have been successfully used
in deriving heuristics in plan recognition (Vered et al. 2018)

(ON B A) (ON A D)

(CLEAR D) (HOLDING A)(CLEAR A) (HOLDING B)

STACK B A STACK A D

(CLEAR B) (ONTABLE B)
(HANDEMPTY)

(CLEAR A) (ONTABLE A)
(HANDEMPTY)

PICK UP APICK UP B

Gu

Figure 6: LGG for P . Contains verified fact landmarks for
P and greedy-necessary orders. A box with multiple land-
marks indicate fact landmarks that must be true together.

Algorithm 2 Generate Feature Vectors

Require: D, I , O, Gu, Gd, p-probability distribution.
1: procedure FEATUREVECTOR(D,O, I,Gu, Gd, p)
2: i = 0; si ← I
3: for o ∈ O do
4: G(V,E)← ExpandGraph(D, si, Gu, Gd)
5: Apply action probabilities to e ∈ E following p
6: Apply state probabilities to v ∈ V following p
7: V (o)← [Ro, Do, δuo , δdo ,Laco , Class]

and generating alternative plans (Bryce 2014). We compute
a feature using attack landmarks: percentage of active attack
landmarks in current state (Lac). To compute Lac for the ex-
ample in Figure 5, we count the number of landmark predi-
cates that have become active (l) in the root of the interven-
tion graph. Then, (Lac) is given by the formula: Lac = l

|Lu|
In Figure 5, l = 4 ((CLEAR B),(CLEAR D),(ONTABLE
B),(HOLDING A)) and Lac = 4/10 = 0.4.

4 Learning When to Intervene
We train the decision tree classifier in supervised learning
mode to categorize observed actions into two classes: “Y”
indicating that the interruption is warranted and “N”, indi-
cating that intervention is unwarranted. According to this
policy, in the expanded sub-tree in Figure 5 the path that
reaches Gu is labeled as follows: PICK-UP A (N), STACK
A D (N), PICK-UP B (N), STACK B A (Y). Label for
each action is indicated within brackets. We will make this
labeled data set available for the community. Given a la-
beled observation set and corresponding feature vectors, we
train the decision tree classifier with 10-fold cross valida-
tion. Then the trained model is used to predict intervention
for previously unseen intervention problems. We decided to
chose the decision tree as the classifier because the decision
tree learned model had the highest accuracy in predicting in-
tervention on new problems compared to the two other clas-
sifiers: random forests (Breiman 2001) and Naive Bayes.

To generate training data we first created twenty plan-
ning problems for each benchmark domain. Then observa-
tion traces corresponding to each problem were generated.
We enforced a limit of 100 observation traces for each plan-
ning problem for grid domains. These observation traces
were provided as input to Algorithm 2. The algorithm takes
a PDDL domain, a set of undesirable and desirable states
and a probability distribution as input and produces a rela-

tion V of observations and feature vectors. We train a deci-
sion tree classifier using the Weka 1 framework. We selected
the implementation of C4.5 algorithm (Quinlan 1993) (J48),
which builds a decision tree using the concept of information
entropy. We chose the decision tree classifier for its ability
determine salient features for intervention, which facilitates
generating explanations for the user.

5 Results and Discussion
We focus on two questions: (1) Using domain-independent
features indicative of the likelihood to reachGu from current
state, can the intervening agent correctly interrupt to prevent
the user from reaching Gu? and (2) If the user was not in-
terrupted now, how can we establish a wait time until the
intervention occurred before Gu? To address the first ques-
tion, we evaluated the performance of the learned model to
predict intervention on previously unseen problems.

The experiment suit consists of the two example domains
from Section 2. To this we added Navigator and Ferry do-
mains from IPC benchmarks. In Navigator domain, an agent
simply moves from one point in grid to another goal desti-
nation. In the Ferry domain, a single ferry moves cars be-
tween different locations. To simulate intervention in active
attacker case (the Block-Words domain), we chose word
building problems. The words user and the attacker want
to build are different but they have some common letters
(e.g., TAD/BAD). The attacker is able to exploit the user’s
progress on stacking blocks to complete word the attacker
wants to build. In Easy-IPC and Navigator domains, we des-
ignated certain locations on the grid as traps. The goal of the
robot is to navigate to a specific point on the grid safely. In
the Ferry domain a port is compromised and a ferry carrying
a car there results in an undesirable state. The ferry’s objec-
tive is to transport cars to specified locations without passing
a compromised port.

In addition to the trained data set, we also generated 3
separate instances of 20 problems each (total of 60) for the
benchmark domains to produce testing data for the learned
model. The three instances contained intervention problems
that were different the trained instances. For example, num-
ber of blocks in the domain (block-words), size of grid
(navigator, easy-ipc), accessible and inaccessible paths on
the grid (navigator, easy-ipc), properties of artifacts in the
grid (easy-ipc). For each instance we generated 10 observa-
tion traces for each planning problem (i.e., 200 observation
traces per instance). We define true-positive as the classifier
correctly predicting “Y”. True-negative is an instance where
the classifier correctly predicts “N”. False-positives are in-
stances where classifier incorrectly predicts an observation
as an interrupt. False-negatives are instances where the clas-
sifier incorrectly predicts the observation not as an interrupt.

5.1 Feature Selection
When a human user receives an interruption, the user may
like to know a reason. To extract salient features for in-
tervention, we applied a correlation based feature selection
technique in data pre-processing step to identify the top four

1http://www.cs.waikato.ac.nz/ml/weka/

Domain Feature Correlation

Blocks

Risk 0.85
Distance to Gd 0.30
Desirability 0.23
Distance to Gu 0.09

Easy-IPC

Risk 0.84
Distance to Gd 0.44
Distance to Gu 0.27
Desirability 0.23

Navigator

Risk 0.85
Distance to Gd 0.28
Desirability 0.18
Distance to Gu 0.04

Ferry

Risk 0.84
Distance to Gd 0.34
Desirability 0.16
Distance to Gu 0.08

Table 1: Correlation factors of top 4 features for benchmark
domains.

best predictors. Feature selection reduces complexity of the
model, makes the outcome of the model easier to interpret,
and reduces over-fitting.

The attribute selector in Weka uses the Pearson’s correla-
tion to measure predictive ability between nominal attributes
and the class. Our feature vector consists of nominal at-
tributes. Table 1 summarizes top 4 correlated features for
each domain. Risk is the best performing feature. Distance
desirable state feature is the next best choice for a feature.
The percentage of active attack landmarks was the weakest
predictor of intervention across all benchmark domains and
was removed from training.

Interrupting at each observation: Assuming the deci-
sion to intervene is made for every observation, we calcu-
lated the true-positive rate (TPR= TP

TP+FN), false-positive
rate (FPR= FP

FP+TN), true-negative rate (TNR= TN
TN+FP),

false-negative rate (FNR= FN
TP+FN) of the trained model. For

each domain, row ‘Each’ in table 2 summarizes TPR, FPR,
TNR, FNR for predicting intervention in unseen observation
traces. The classifier works well in identifying intervention
across domains. In line with our expectation, TPR and TNR
are very high (> 95%) across domains and FNR and FPR is
very low(< 5%). Because the accuracy remains consistant
across test instances we conclude that the model is reason-
ably tolerant for modifications in the domain such as grid
sizes and number of objects.

Delaying the interruption: In real-life, making the in-
tervention decision for every observation may be costly. If
we are intervening a human user, he may disregard frequent
interruptions as noise. For this reason, we examine how to
establish a wait time until intervention occurs for the first
time. We used the feature (Lac) as a checkpoint for the in-
tervening agent to wait safely without interrupting the user.

We modified the observation traces to contain action se-
quences starting from a point where the current state con-
tained 50% and 75% of active landmarks. For problem in-
stances where 75% active landmark percentage was infeasi-
ble, we limited it to the maximum active landmark percent-
age. We used the same learned model to predict intervention
for these modified traces. For each domain, row ‘Delayed50’

in table 2 summarizes TPR, FPR, TNR, FNR for predicting
interruptions for benchmark domains given that the decision
is delayed until 50% <= Lac < 75%. The row ‘Delayed75’
indicates that the decision was delayed until Lac >= 75%.

Accuracy is not affected significantly by delaying the in-
tervention from the chosen checkpoints. However, a nega-
tive effect of delaying intervention is missing true positives.
We evaluated how the delay affects the percentage of true
positive observations missed. Table 3 summarizes these re-
sults. Intuitively, the longer the delay, a higher percentage of
true positives will be missed. For the Blocks-Word domain,
there is no effect between the the delay until 50% and 75%.
In both cases the delaying the decision does not cause the
intervening agent to miss any true positives. The most sig-
nificant loss occurs in Navigator domain, where delay un-
til 75% will cause a loss of 2%-28% while delaying until
50% is the safest choice. The Ferry domain exhibits a sim-
ilar pattern where the delay until 75% landmarks become
active will cause a loss of 8%-18%. We conclude that de-
laying interruptions can be controlled by the percentage of
active landmarks in the current state and that for certain do-
mains it is a trade off between loss of true-positives and the
delay.

6 Explaining Intervention
When an observation that warrants intervention is identified
intervening agent issues a warning (and an explanation) to
the user. The user needs to take corrective/mitigating ac-
tions to avoid the undesirable state. The decision trees can
help explain intervention. Decision trees generated for the
benchmark domains are shown in Figure 7. Combining the
shallow trees and the definitions of the features allow us to
generate a clear and succinct set of rules to explain interven-
tion. For the Block-word domain, (Figure 7-a), the rule that
explains intervention first looks at the value of Risk. If the
risk is less than or equal to 0.5 then that observation does not
qualify as an intervention point. By definitions, this means
that from the current state there are multiple ways to reach
the undesirable state, indicating the observation is a com-
mon action that can be perceived as harmless. Next, if the
observation that has a risk level of grater than 0.5 (indicating
there are fewer ways of reach the undesirable state and that
it’s imminent), next feature to look at is the distance to the
undesirable state. If the distance is negative, indicating that
execution of this step will trigger the undesirable state, then
the observation warrants intervention. Otherwise the obser-
vation does not require intervention. With this decision tree,
an explanation for intervention in Blocks-words domain can
be developed as: The current step was intervened because
the risk level is significant (> .5) and the effect of this ob-
served action will trigger the undesirable state.

For the passive attacker domains (Figure 7 - (b),(c),(d))
the learned model generated even simpler trees with only
one feature being used to determine intervention. For Easy-
IPC and Navigator domains, the Risk feature determines the
class of an observation. This leads to generating explana-
tions for the Easy-IPC and Navigator domains such as The
current step was intervened because the risk level is signif-
icant (> .75 for Easy-IPC and > .5 for Navigator). For the

Risk

Distance to
Critical State

>0.5

N

<=0.5

YN

<=0>0

Risk

>0.75 <=0.75

Y N

Risk

<=0.5

Y N

> 0.5

Distance to
Desirable State

>-1

Y N

<= -1

(a) Block-words (b) Easy-IPC (c) Navigator (d) Ferry

Figure 7: Decision trees generated for (a) Blocks, (b) Easy-
IPC, (c) Navigator, (d) Ferry domains

Ferry domain, Distance to Gd determines intervention. A
negative value indicates that if the next step was executed
there is no way to reach the desirable goal state without trig-
gering the undesirable state. Thus an explanation of inter-
vention for the Ferry domain will be: The current step was
intervened because the effect of this step will make it impos-
sible to reach the desired goal without triggering the unde-
sirable state.

7 Related Work
Closely related areas of literature for this work is plan/goal
recognition. Plan recognition is the problem of inferring
the course of action (i.e., plan) an actor may take towards
achieving a goal from a sequence of observations (Schmidt,
Sridharan, and Goodson 1978; Kautz and Allen 1986). The
constructed plan, if followed to completion, is expected to
result in states that correspond to goals of the actor, which
in turn presupposes that the actor intends to achieve those
goals. Plan/goal recognition approaches in the literature ex-
plore both domain-dependent and independent methods. In
domain-dependent methods agents rely heavliy on domain
knowledge for inference. For example, Kabanza et al. (2010)
presents a solution that recognizes an agents adversarial in-
tent by mapping observations made to date to a plan library.
Boddy et al. (2005) discuss how to construct and manipu-
late domain models that describe behaviors of adversaries
in computer security domain and use these models to gen-
erate plans. Another approach uses Goal Driven Autonomy
(GDA) that allows agents to continuously monitor the cur-
rent plans execution and assess if the current state matches
with expectation (Klenk, Molineaux, and Aha 2013).

More recent work attempts to separate this knowledge de-
pendency by allowing the agent to learn knowledge from ob-
servations (Jaidee, Muñoz-Avila, and W. Aha 2011). In con-
trast, domain-independent goal recognition that use plan-
ning to infer agents goals. Ramirez and Geffner (2009;
2010) used an existing planner to generate hypotheses from
observations to infer a single agent’s plan. Their approaches
offer advantages of being more adaptive to input as well as
exploiting existing planning systems and plan representa-
tions. Their first approach computed the set of goals that can
be achieved by optimal plans that match the observations.
The second approach removed the optimality constraint and
computed a probability distribution across possible plans

Domain Interrupt
Type

Instance 1(20) Instance 2 (20) Instance 3 (20)
TPR FPR TNR FNR TPR FPR TNR FNR TPR FPR TNR FNR

Blocks
Each 1 0 1 0 1 0 1 0 1 0 1 0
Delayed50 1 0 1 0 1 0 1 0 1 0 1 0
Delayed75 1 0 1 0 1 0 1 0 1 0 1 0

Easy-IPC
Each 1 .05 .95 0 1 .03 .97 0 1 .03 .97 0
Delayed50 1 .06 .94 0 1 .03 .97 0 1 .03 .97 0
Delayed75 1 .06 .94 0 1 .03 .97 0 1 .03 .97 0

Navigator
Each 1 .01 .99 0 1 .03 .97 0 1 .02 .98 0
Delayed50 1 .01 .99 0 1 .03 .97 0 1 .02 .98 0
Delayed75 1 .02 .98 0 1 .03 .97 0 1 .03 .97 0

Ferry
Each 1 .02 .98 0 1 .05 .95 0 1 0 1 0
Delayed50 1 .02 .98 0 1 .05 .95 0 1 0 1 0
Delayed75 1 .02 .98 0 1 .03 .97 0 1 0 1 0

Table 2: True-positive (TPR), False-positive (FPR), True-negative (TNR), False-negative (FNR) rates for predicting interrupt
decision for unseen problems.

Domain Delay Instance 1 Instance 2 Instance 3

Blocks
Delayed50 0% 0% 0%
Delayed75 0% 0% 0%

Easy-IPC
Delayed50 0% 6% 5%
Delayed75 0% 6% 5%

Navigator
Delayed50 0% 0% 0%
Delayed75 28% 2% 4%

Ferry
Delayed50 6% 5% 0%
Delayed75 11% 8% 18%

Table 3: Percentage of missed observations that should have
been flagged as an interrupt

that could be generated from existing planners (Ramırez and
Geffner 2010). Keren et al. (Keren, Gal, and Karpas 2014)
introduced the worst-case distinctiveness (wcd) metric as a
measurement of the ease of performing goal recognition in a
domain. The wcd problem finds the longest sequence of ac-
tions an agent can execute while hiding its goal. They show
that by limiting the set of available actions in the model wcd
can be minimized, which will allow the agent to reveal it’s
goal as early as possible.

In online recognition, Vered et al. (2018) propose an ap-
proach that combines goal-mirroring and landmarks to infer
the goal of an agent. Landmarks are used to minimize the
number of hypotheses the agent has to evaluate, thus im-
proving the effeciency of the recognition process. Pozanco
et al. (2018) combines Ramirez and Geffener’s plan recog-
nition approach and leverages landmarks to counterplan and
block an opponent’s goal achievement. The main difference
between plan intervention and recognition is that, in inter-
vention the time intervention happens is critical. In plan
recognition, identifying the plan at the right time is not a
priority. The user’s preferences in intervention (e.g., in-time,
targetted intervention vs. prolonged and incremental) and
the source of uncertainty in the environment (e.g., environ-
ment, attacker) complicate the intervening agent’s decisioni
and can be seen as trade-offs. Furthermore, our approach
complements existing approaches by using a decision tree

to identify events that warrant intervention and identifying
salient features that may be useful in generating explana-
tions to plan intervention.

8 Summary and Future Work
We formalized the online plan intervention problem in a
competitive domain where an attacker both actively and
passively attempts to leverage progress made by a user to
achieve the attacker’s own conflicting goals. We introduced
the intervention graph, which models the decision space of
an observer, whose goal is to support the user by block-
ing actions that allows the attacker to achieve his goal. We
trained a classifier using domain-independent features ex-
tracted from the intervention graph to evaluate the criticality
of the current state. The model predicts intervention with
high accuracy for the benchmark domains.

Our solution suffers from state space explosion for large
domains. As an solution, we suggest sampling from alter-
native plans generated from off-the-shelf planners. This will
also allow us to compare the proposed approach with exist-
ing online goal-recognition methods. The uncertainty model
can be extended to limiting the observer’s ability to fully
perceive the current state. We recognize the attack models
(for both active and passive cases) can be expanded to dif-
ferent threat models. For example, the attacker can behave
as truly adversarial and undo progress the user has made
so far and guide the user towards an entirely different goal.
We will improve on explanations by suggesting actions that
will help the user avoid the undesirable state when interven-
tion occurs, instead of delegating the responsibility of being
safe to the user, and integrating causal reasoning to explana-
tions. These extensions lay a foundation for applying clas-
sical planning techniques for decision support and assistive
agents.

Acknowledgments
We thank the anonymous reviewers for comments that
helped improve the paper. The authors also thank AFOSR
and NRL for funding this research.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90(1):281–300.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005. Course
of action generation for cyber security using classical planning. In
Proceedings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 12–21.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5–32.
Bryce, D. 2014. Landmark-based plan distance measures for di-
verse planning. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS).
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2(3):189–208.
Gupta, N., and Nau, D. S. 1992. On the complexity of blocks-world
planning. Journal of Artificial Intelligence 56(2):223–254.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning. Journal of Artificial Intelligence Research
22(1):215–278.
Jaidee, U.; Muñoz-Avila, H.; and W. Aha, D. 2011. Integrated
learning for goal-driven autonomy. In International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2450–2455.
Kabanza, F.; Bellefeuille, P.; Bisson, F.; Benaskeur, A. R.; and Iran-
doust, H. 2010. Opponent behaviour recognition for real-time strat-
egy games. In Proceedings of the 5th AAAI Conference on Plan,
Activity, and Intent Recognition (PAIR), AAAIWS’10-05, 29–36.
AAAI Press.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recogni-
tion. In Proceedings of 5th National Conference on Artificial Intel-
ligence (AAAI), 32–37.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition design.
In Proceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS), 154–162.
Klenk, M.; Molineaux, M.; and Aha, D. W. 2013. Goal-driven
autonomy for responding to unexpected events in strategy simula-
tions. Computational Intelligence 29:187–206.
McDermott, D. 1999. Using regression-match graphs to control
search in planning. Artificial Intelligence 109(1–2):111–159.
Pozanco, A.; Yolanda, E.; Fernández, S.; and Borrajo, D. 2018.
Counterplanning using goal recognition and landmarks. In Pro-
ceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI), 4808–4814.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Ramırez, M., and Geffner, H. 2009. Plan recognition as planning.
In Proceedings of the 21st International Joint Conference on Artif-
ical Intelligence (IJCAI), 1778–1783.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recogni-
tion using off-the-shelf classical planners. In Proceedings of the
Conference of the Association for the Advancement of Artificial In-
telligence (AAAI), 1121–1126.
Schmidt, C. F.; Sridharan, N.; and Goodson, J. L. 1978. The plan
recognition problem: An intersection of psychology and artificial
intelligence. Artificial Intelligence 11(1-2):45–83.
Vered, M.; Pereira, R. F.; Magnaguagno, M.; Meneguzzi, F.; and
Kaminka, G. A. 2018. Online goal recognition as reasoning over
landmarks. In The AAAI 2018 Workshop on Plan, Activity, and
Intent Recognition (PAIR).

Towards an argumentation-based approach to explainable planning

Anna Collins, Daniele Magazzeni and Simon Parsons
Department of Informatics, King’s College London

{anna.collins,daniele.magazzeni,simon.parsons}@kcl.ac.uk

Abstract

Providing transparency of AI planning systems is crucial for
their success in practical applications. In order to create a
transparent system, a user must be able to query it for expla-
nations about its outputs. We argue that a key underlying prin-
ciple for this is the use of causality within a planning model,
and that argumentation frameworks provide an intuitive rep-
resentation of such causality. In this paper, we discuss how ar-
gumentation can aid in extracting causalities from plans and
models, and how they can create explanations from them.

1 Introduction
Explainability of AI decision-making is crucial for increas-
ing trust in AI systems, efficiency in human-AI teaming,
and enabling better implementation into real-world settings.
Explainable AI Planning (XAIP) is a field that involves ex-
plaining AI planning systems to a user. Approaches to this
problem include explaining planner decision-making pro-
cesses as well as forming explanations from the models. Past
work on model-based explanations includes an iterative ap-
proach (Smith 2012) as well as using explanations for more
intuitive communication with the user (Fox, Long, and Mag-
azzeni 2017). With respect to human-AI teaming, the more
helpful and illustrative the explanations, the better the per-
formance of the system overall.

Research into the types of questions and motivations a
user might have includes work with contrastive questions
(Miller 2018). These questions are structured as ‘Why F
rather than G?’, where F is some part (i.e. action(s) in a
plan) of the original solution and G is something the user
imagines to be better. While contrastive questions are use-
ful, they do not consider the case when a user doesn’t have
something else in mind (i.e. G) or has a more general ques-
tion about the model. This includes the scenario in which the
user’s understanding of the model is incomplete or inaccu-
rate. Research in the area of model reconciliation attempts
to address this knowledge gap (Chakraborti et al. 2017).

More broadly, questions such as ‘Why A?’, where A is an
action in the plan, or ‘How G?’, where G is a (sub)goal, must
be answerable and explainable. Questions like these are in-
herently based upon definitions held in the domain related

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to a particular problem and solution. The user’s motivation
behind such questions can vary: he could think the action
is unnecessary, be unsure as to its effects, or think there is
a better option. Furthermore, questions regarding particular
state information may arise, such as ‘Why A here?’ and ‘Why
can’t A go here?’. For these, explanations that include rele-
vant state information would vastly improve their efficiency
when communicating with a user (Miller 2018). This is es-
pecially true for long plans, when a user does not have ac-
cess to a domain, or the domain is too complex to be eas-
ily understood. Thus, extracting relevant information about
action-state causality from the model is required.

In the space of planning, causality underpins a variety
of research areas including determining plan complexity
(Giménez and Jonsson 2008) and heuristics (Helmert 2004).
Many planners also can create causal graph visualizations
of plans for a user to interact with (Pearl 2014). The general
structure of causality in planning is ‘action causes state’. In-
directly, this can be seen as ‘action enables action’, where
the intermediary state is sufficient for the second action to
occur. Hilton describes different ‘causal chains’ which mir-
ror the types of causality found in planning; action-state
causality can be identified as either a ‘temporal’ or ‘unfold-
ing’ chain, while action-action causality is similar to an ‘op-
portunity chain’(Hilton, McClure, and Slugoski 2005). For
now, we will focus on these two types of general causality.

To represent the causality of a model, argumentation is
a good candidate; as detailed by (Bochman 2005), argu-
mentation frameworks and causal models can be viewed as
two versions of one entity. A recent related work uses ar-
gumentation for explainable scheduling (Cyras et al. 2019).
We consider an ASPIC+ (Modgil and Prakken 2013) style
framework with defeasible rules capturing the relationships
between actions in a plan and strict rules capturing action-
state causality. This structure allows more than a causal rep-
resentation of a plan; it allows multiple types of causality to
be distinguished and different causal ‘chunks’ to be created
and combined to be used as justification for explanations.

In this paper we present an initial approach for using ar-
gumentation to represent causality, which can then be used
to form more robust explanations. In the following sections,
a motivating scenario will be introduced and used to show-
case our current approaches of abstracting causalities and
state information into argumentation frameworks.

Anna Collins

2 Motivating Example
Consider a simple logistics scenario in which three trucks
are tasked with delivering three packages to different loca-
tions. The user analyzing the planner output has the plan as
well as a general, non-technical understanding of the model
and the goals of the problem; the user knows that trucks can
move between certain waypoints that have connecting roads
of differing lengths, there are refueling stations at waypoints
B and E, and some subgoals of the problem are to have
package 1 delivered to waypointC, package 2 delivered to
waypoint G, and package 3 delivered to waypoint D. The
user is also aware that the three trucks and three packages
are at waypoint A in the initial state. A basic map of the
domain and plan are shown in Figures 1 and 2, respectively.

2

4

A

B

3

F

2

C

2

D

E

3
5

G

3

Figure 1: Example Domain Map

0.000: (load_truck t1 p1) [1.000]
0.000: (load_truck t2 p3) [1.000]
0.000: (drive_truck t3 wpB) [2.000]
1.001: (load_truck t1 p2) [1.000]
1.001: (drive_truck t2 wpD) [3.000]
2.001: (drive_truck t1 wpC) [4.000]
2.001: (refuel_truck t3) [5.000]
4.002: (unload_truck t2 p3) [1.000]
5.002: (unload_truck t1 p1) [1.000]
6.003: (drive_truck t1 wpD) [2.000]
8.004: (drive_truck t1 wpE) [2.000]
10.005: (refuel_truck t1) [5.000]
15.006: (drive_truck t1 wpF) [3.000]
18.007: (drive_truck t1 wpG) [3.000]
21.008: (unload_truck t1 p2) [1.000]

Figure 2: Example Plan

Even with a simple and intuitive problem such as this,
questions may arise which cannot be answered trivially. One
such question is ‘Why drive truck 1 to waypoint E?’. Ad-
dressing this question requires the causal consequence of ap-
plying the action; in other words, how does driving truck 1
to waypoint E help in achieving the goal(s)?

As discussed previously, tracking state information
throughout a plan can be useful for explanations. This is es-
pecially true when values of state variables are not obvious
at any given point in a plan and their relevance to a ques-
tion is not known. A question such as ‘Why drive truck 3 to
waypoint B?’ has this property. These two questions will be
addressed in the following sections.

3 Background on Argumentation
As mentioned above, in this paper we will make use
of ASPIC+ as the underlying argumentation system from
which explanations are constructed. However, what we are
suggesting is not limited to ASPIC+; we can imagine using
most formal argumentation systems to reason in this way.
For a full description of ASPIC+ see (Modgil and Prakken
2013). In this paper we only make use of the ability to con-
struct arguments, and so that is the only aspect of the system
that we describe.

We start with a language L, closed under negation. A rea-
soner is then equipped with a set Rules of strict rules,
denoted φ1, . . . , φn → φ, and defeasible rules, denoted
φ1, . . . , φn ⇒ φ, where φ1, . . . , φn, φ are all elements of
L. A knowledge base ∆ is then a set of elements K from
L and a set Rules. From ∆ it is possible to construct a set
of arguments A(∆), where an argument A is made up of
some subset of K, along with a sequence of rules, that lead
to a conclusion. Given this, Prem(·) returns all the premises,
Conc(·) returns the conclusion and TopRule(·) returns the
last rule in the argument. An argument A is then:

• φ if φ ∈ K with: Prem(A) = {φ}; Conc(A) = φ;
Sub(A) = {A}; and TopRule(A) = undefined.

• A1, . . . , An → φ if Ai, 1 ≤ i ≤ n, are arguments
and there exists a strict rule of the form Conc(A1), . . . ,
Conc(An) → φ in Rules. Prem(A) = Prem(A1) ∪
. . . ∪ Prem(An); Conc(A) = φ; and TopRule(A) =
Conc(A1), . . . , Conc(An)→ φ.

• A1, . . . , An ⇒ φ if Ai, 1 ≤ i ≤ n, are arguments and
there exists a defeasible rule of the form Conc(A1), . . . ,
Conc(An) ⇒ φ in Rules. Prem(A) = Prem(A1) ∪
. . . ∪ Prem(An); Conc(A) = φ; and TopRule(A) =
Conc(A1), . . . , Conc(An)⇒ φ.

Then, given K = {a; b} and Rules = {a → c; b, c ⇒ d},
we have the following arguments:

A1 : a

A2 : b

A3 : A1 → c

A4 : A2, A3 ⇒ d

When applied to planning, these arguments define a sub-
section of a causal chain, as will be described below.

4 Tracing Causality
In order to utilize causality in explanations, the causal links
between actions in a plan need to be extracted and abstracted
into a framework. This process is planner-independent, so it
requires only the plan, problem, and domain as inputs. An
algorithm is used to extract the causalities which then form
a knowledge base of causal links. This can then be used by
an argumentation engine to construct arguments represent-
ing the causal ‘chunks’ in a plan. From this, questions of
the forms ‘Why A?’ and ‘How G?’ can be addressed. This
process is described in the following sections.

4.1 Extracting causalities from a plan
To extract causal relationships between actions in a plan, an
algorithm similar to the one used in (Chrpa and Barták 2008)
for detecting action dependencies is utilized:

1. Finds connections between one action’s effects and an-
other’s preconditions from the domain to form a knowl-
edge base. In general terms we can think of these chunks
as being statements in some logical language of the form:

a⇒ b

b, c⇒ d

which denote the statements ‘a enables b’ and ‘b and c
together enable d’ where a, b, c, d are actions in a plan.

2. Finds the subgoals, if any, that are satisfied by these causal
links

Thus, part of our logistics example could be translated into
the causal knowledge base:

((load truck t1 p1),

(drive truck t1 wpC))⇒ (unload truck t1 p1)

(drive truck t1 wpC)⇒ (drive truck t1 wpD)

(unload truck t1 p1)⇒ p1 at wpC

(drive truck t1 wpD)⇒ (drive truck t1 wpE)

4.2 Forming arguments
Given a knowledge base, the argumentation engine can con-
struct a sequence of arguments with defeasible rules:

A1 :(load truck t1 p1)

A2 :(drive truck t1 wpC)

A3 :A1, A2 ⇒ (unload truck t1 p1)

A4 :A3 ⇒ p1 at wpC

A5 :A2 ⇒ (drive truck t1 wpD)

A6 :A5 ⇒ (drive truck t1 wpE)

A7 :A6 ⇒ (refuel truck t1)

A8 :A7 ⇒ (drive truck t1 wpF)

A9 :A8 ⇒ (drive truck t1 wpG)

A10 :A9 ⇒ (unload truck t1 p2)

A11 :A10 ⇒ p2 at wpG

These summarize the causal structure of part of the plan (i.e.
a ‘causal chunk’ as defined in Secion 4.3), summarized in
argument A11, which can then be presented to a user who
is seeking explanations. A visualization of these arguments
can be seen in Figure 3.

4.3 Using causal chunks for explanation
We define the notion of a causal ‘chunk’ as any subsection(s)
of the causal chain(s) extracted from the plan or model
and then combined. Intuitively, these chunks can focus on
one ‘topic’ (e.g. state variable, object instance) to provide a
higher-level abstraction of causality rather than just the in-
dividual causal links. The argument A11 which represents
such a causal chunk shows only the action-action causalities

a

b

c

d

G

I

A1A2A3

∂1

∂2

∂3

Figure 3: I is the initial state, G is the goal state, a, b, c, d
are (not necessarily sequential) actions in a plan, δi are the
defeasible rules from the knowledge base, and A1, A2, A3

are arguments formed from these actions and rules.

(i.e. from just one causal chain) involving the object truck 1.
These chunks are created by searching through the Rules
of the framework for those pertaining to a specific ‘topic’.

Given arguments such as A11, we propose two methods
of structuring explanations. The first method is allowing the
user to engage the system in a dialogue. For our example,
the question, ‘Why e? where e is the action of driving truck
1 to waypoint E could be used to query the system:
why e

Following work such as (Parsons, Wooldridge, and Amgoud
2003), the system replies to this query by building an ar-
gument for e, in this case A6, and using this to provide a
suitable response, which might be by returning Conc(A5),
since A5 ⇒ e. Thus the system could reply with:
d, which leads to e

where d is drive truck t1 wpD. The user could then continue
to unpack the causal chunk by asking:
why d

and so on. This would provide the user with the causalities
which enabled action e to be applied. The same could be
done using a forward approach where the argument A6 is
expanded until a subgoal is reached, if possible (e.g. A11).
The user can then ask:
why e

and the system responds with:
e leads to f

as in A7 : A6 ⇒ f . Iteratively, this would show how e leads
to some goal or subgoal. Reversing this process will also
explain how a goal is reached.

The second method of structuring explanations is detailed
in Section 5.2, and can be applied to this example similarly.

5 Extracting State Information
Using a similar method as above, causalities held within the
state space of the plan are extracted and represented as a

knowledge base. An algorithm is used that iterates through
the effects of actions from a plan and extracts the state vari-
ables they alter. They can then be used to answer questions
such as ‘Why A here?’ and ‘Why can’t A go here?’. In gen-
eral terms, we define these dependencies as being statements
in some logical language of the form:

x0, y0, z0

a→ ∆xa

b→ ∆yb; b→ ∆zb

xf , yf , zf

which denote the statements ‘a causes ∆xa’ and ‘b causes
∆yc and ∆zc’. Here, a, b are actions in the plan, and x, y, z
are state variables. The x0, y0, z0 denote the values of those
variables in the initial state while xf , yf , zf denote the final
values in the goal state; ∆xa denotes the change in x after
applying action a.

Applying this to our logistics example and the question,
‘Why drive truck 3 to waypoint B?’, these strict rules are
relevant:

t3 fuel is 2

(drive truck t3 wpB)→ t3 fuel decrease 2

(refuel truck t3)→ t3 fuel increase 25

t3 fuel is 25

From these, it is clear the truck’s fuel level is too low in the
initial state to go anywhere besides waypoint B (see Figure
1). However, it is not clear why the truck does not just stay
put. Alone, these rules do not provide a full explanation, but
they can be added to the action-action causal chains for more
complete explanations.

5.1 Combining different forms of causality
When used in conjunction, the causal traces and opportunity
traces form a strong basis of justification for an explanation
(see Figure 4 for a visual representation). Using the example
from before, the relevant defeasible rules from the causal
chain are:

(drive truck t3 wpB)⇒ (refuel truck t3)

(refuel truck t3)⇒ t3 fuel > 5

where the conclusion of the second rule is a subgoal of the
problem, perhaps previously unknown to the user. That is,
because the problem requires all trucks to have a minimum
amount of fuel at the end, truck 3 had to refuel but could not
deliver any packages due to its low initial fuel amount. Thus,
combining arguments from both types of causal chains more
aptly answers this question.

A method for seamlessly creating explanations from this
structure is an intended future work. For now, it is possible
to extract both the defeasible rules and strict rules governing
the causal effects related to a specific topic and present them
to a user. How to determine which rules are relevant to a
specific user question and how to combine the rules to form
higher-level causal chunks are ongoing works.

One possible method of creating relevant causal chunks
is to extract all rules related to a specific ‘topic’ (e.g. state

a

b

c

f

G

I

Chunk 1

Chunk 2

d

e

Model

Figure 4: Rules from both the plan layer (blue) and the
model layer (yellow) are combined to form the causal
‘chunks’.

variable). For the variable ‘t3 fuel’, all actions which alter
it will be extracted along with any actions that enable the
altering actions from the defeasible rules. Additionally, any
(sub)goals containing ‘t3 fuel’ will be extracted. Together,
these form a chunk representing the causes of changes to
‘t3 fuel’ as well as its relationship to the (sub)goals. The
arguments below represent the causal ‘chunk’:

A1 : t3 fuel is 2

A2 :A1 ⇒ ((drive truck t3 wpB)→ t3 fuel decrease 2)

A3 :A2 ⇒ ((refuel truck t3)→ t3 fuel increase 25)

A4 :A3 ⇒ t3 fuel > 5

where the conclusion of A3 is a subgoal of the problem.

5.2 More forms of explanation
When unpacked iteratively, the arguments in the causal
chunk centred on ‘t3 fuel’ would give a similar output expla-
nation as in the example in Section 4.3. For example, a user
asking the question ‘Why b?’ where b is the action (drive
truck 3 to waypoint B) would either receive the response:

t3 fuel is 2 enables b
or the response:

b causes t3 fuel decrease 2 and enables c
if using a forward chaining approach, where c is the premise
of the conclusion ofA2, (refuel truck t3). This process would
continue until the subgoal t3 fuel >5 is reached. However,
identifying what state variables are relevant given a user
question is not trivial. The question ‘Why drive truck 3 to
waypoint B?’ has no mention of the truck’s fuel, so its rele-
vance must be deduced from the plan, problem and domain.

Another method of providing explanations is through a
graph structure, as depicted in Figure 5. Given a query, the
relevant causal chunks would be identified and represented
in the graph with individual actions and state changes as
nodes and the causal rules between them as edges. This ap-
proach could also help explain question of the form, Why

can’t A go here?, as inapplicable actions (ones not in the
plan) can be shown. Developing a robust system such as this
is important future work.

Drive Truck 3 to
Waypoint B

Truck 3
Fuel is 2

Drive Truck 3 to
Waypoint C

Drive Truck 3 to
Waypoint D

Refuel
Truck 3

Truck 3 Fuel
increase 25

Truck 3
Fuel > 5

I: G:

Figure 5: An example graph with the queried action in blue
and nodes contained in the ‘t3 fuel’ chunk in orange, and I
and G the initial and goal states. Dashed edges denote de-
feasible rules; solid edges denote strict rules.

6 Discussion
We acknowledge that this is a preliminary step and more
work is required to expand on the ideas presented in this
paper. One such future work involves defining exactly what
questions, which range from action-specific to model-based,
can be answered and explained using our approach. Also,
how these questions are captured from a user is an open
question. The query, ‘Why didn’t truck 3 deliver any pack-
ages?’ can be answered using the causal information cap-
tured in the framework, but how one converts this question
to a form that the system understands requires further re-
search. Potential methods for communicating a user ques-
tion include a dialogue system or Natural Language Process-
ing techniques.

Along with expanding the set of questions that can be ad-
dressed, extensions to the argumentation framework itself
should be considered. Better methods for creating causal
‘chunks’ for specific user questions are needed. It may be
advantageous to use argumentation schemes to help identify
relevant topics of chunks and which causal chains should
be included from the framework. This relates to the idea of
‘context’ and identifying the motivation of a question. If the
system can be more precise in extracting the relevant infor-
mation, the explanations themselves will be more effective.

Related to this is the need to explore other ways of pre-
senting an explanation to a user. Research into the efficacy of
explanations and how to properly assess the effectiveness of
the explanations in practice are future areas of research, and
will require user studies. Our starting point will be the ap-
proach outlined in Section 4.3 which has been shown empir-
ically to be effective in contexts such as human-robot team-
ing (Sklar and Azhar 2015).

7 Conclusion
In this paper we proposed an initial approach to explainable
planning using argumentation in which causal chains are ex-
tracted from a plan and model and abstracted into an argu-
mentation framework. Our hypothesis is that this allows ease
of forming and communicating explanations to a user. Fur-
thermore, causal ‘chunks’ can be created by combining rel-

evant causal links from the chains which explain the causal-
ities surrounding one ‘topic’. We believe these help with
making more precise explanations, and that chunks can be
used to provide hierarchical explanations. Overall, the ap-
proach is a first step towards exploiting the intuitive func-
tionality of argumentation in order to use causality for ex-
planations.

Acknowledgements This work was partially supported
by EPSRC grant EP/R033722/1, Trust in Human-Machine
Partnership, and by a PhD studentship from the Faculty of
Natural and Mathematical Sciences at King’s College Lon-
don.

References
Bochman, A. 2005. Propositional argumentation and causal
reasoning. In IJCAI.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Chrpa, L., and Barták, R. 2008. Towards getting domain
knowledge: Plans analysis through investigation of actions
dependencies. In International Florida Artificial Intelli-
gence Research Society Conference.
Cyras, K.; Letsios, D.; Misener, R.; and Toni, F.
2019. Argumentation for explainable scheduling. In
https://arxiv.org/abs/1811.05437.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Ex-
plainable planning. IJCAI workshop on Explainable AI
abs/1709.10256.
Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. J. Artif. Intell.
Res. 31:319–351.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS.
Hilton, D. J.; McClure, J. L.; and Slugoski, B. R. 2005.
The course of events: Counterfactuals, causal sequences and
explanation. In The Psychology of Counterfactual Thinking.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. arXiv preprint arXiv:1811.03163.
Modgil, S., and Prakken, H. 2013. A general account
of argumentation with preferences. Artificial Intelligence
195:361–397.
Parsons, S.; Wooldridge, M.; and Amgoud, L. 2003. Proper-
ties and complexity of formal inter-agent dialogues. Journal
of Logic and Computation 13(3):347–376.
Pearl, J. 2014. Graphical models for probabilistic and causal
reasoning. In Computing Handbook, Third Edition: Com-
puter Science and Software Engineering. 44: 1–24.
Sklar, E. I., and Azhar, M. Q. 2015. Argumentation-based
dialogue games for shared control in human-robot systems.
Journal of Human-Robot Interaction 4(3):120–148.
Smith, D. 2012. Planning as an iterative process. In AAAI.

Human-Understandable Explanations of Infeasibility
for Resource-Constrained Scheduling Problems

Niklas Lauffer, Ufuk Topcu ∗

{nlauffer, utopcu}@utexas.edu
University of Texas, Austin

Abstract

Significant work has been dedicated to developing methods
for communicating reasons for decision-making within au-
tomated scheduling and planning systems to human users.
However, much less focus has been placed on communicat-
ing reasons for why scheduling systems are unable to arrive
at a feasible solution when over-constrained. We investigate
this problem in the context of task scheduling. We introduce
the agent resource-constrained project scheduling problem
(ARCPSP), an extension of the resource-constrained project
scheduling problem which includes a conception of agents
that execute tasks in parallel. We outline a generic framework,
based on efficiently enumerating minimal unsatisfiable sets
(MUS) and maximal satisfiable sets (MSS), to produce small
descriptions of the source of infeasibility. These descriptions
are supplemented with potential relaxations that would fix the
infeasibility found within the problem instance. We illustrate
how this method may be applied to the ARCPSP and demon-
strate how to generate different types of explanations for an
over-constrained instance of the ARCPSP.

1 Introduction
In many real-world applications, human users in charge of
developing plans and making decisions are aided by au-
tomated planning and scheduling systems. For example,
NASA mission planning makes use of a large team of hu-
man planners that use various automated scheduling sys-
tems in order to construct day-to-day as well as long-term
plans for crew members. A primary function of these au-
tomated systems is generating different types of plans and
schedules while ensuring that various constraints do not con-
flict. When plans are ultimately constructed by human plan-
ners for a human crew, it is essential for both the planners,
and the crew executing the plans, to understand how and
why certain scheduling decisions were made by automated
tools. In general, when the primary function of such con-
straint satisfaction and optimization tools is to support hu-
man decision-making, it is necessary for the automated sys-
tems to be transparent in how they arrive at certain outputs.

Significant work has been dedicated to generating human-
understandable explanations for why certain automated
planning decisions were made (Seegebarth et al. 2013).

∗This work has been supported in part by the grants NASA
NNX17AD04G and NSF 1652113.

However, little work has been done in generating reasons for
why plans or schedules cannot be generated under certain
specifications. Human users interacting with such constraint
satisfaction or optimization tools are bound to run into con-
figurations for which no feasible solution exists. Fixing in-
feasible configurations is a challenging task for the human
user if they are unable to understand why the solver arrives
at an unsatisfiable conclusion.

While various partial constraint satisfaction tools exist for
solving such over-constrained problems (Freuder and Wal-
lace 1996), solutions employing these tools have significant
limitations that make them less applicable in certain real-life
scenarios. Most of these methods employ constraint hierar-
chies to determine which constraints should be violated in
order to satisfy more important ones. However, in compli-
cated planning or scheduling applications involving multi-
ple human agents, constructing such a hierarchy is often im-
practical. Instead, if reasons for infeasibility can be properly
conveyed back to the human user, they can make high-level
decisions to solve infeasibility in any way they see fit.

In this paper, we provide a framework for iteratively gen-
erating human-understandable explanations of infeasibility
for a specific class of scheduling problems. These explana-
tions manifest themselves as minimal sets of specifications
(or constraints) that are responsible for causing infeasibil-
ity, coupled with suggestions for relaxations through which
feasibility could be achieved.

The method proposed in this paper allows users to enu-
merate over a series of explanations for infeasible instances
of problems at varying levels of abstraction. For example,
raw explanations of relevant low-level constraints may be
directly output or a causal link may be established back to
higher level descriptions of the problem to understand what
specifications were responsible for the feasibility issue. This
system also allows directed questions about feasibility to be
asked, such as “why can task A not be scheduled after task
B?”

A strategy for iteratively generating minimal unsatisfiable
sets (MUS) and maximal satisfiable sets (MSS) forms the
basis for interpreting the infeasibility of the problem. Exist-
ing methods such as QuickXplain (Junker 2004) focus on
generating a single most preferable explanation of infeasi-
bility. Likewise, (Burt, Klimova, and Primas 2018) aims to
generate a single explanation in the context of optimization

without attempting to achieve minimality. However, over-
constrained problems may contain several infeasibility is-
sues which cannot be solved by changing only a single part
of the problem. So, because a single MUS only provides
indication of a single feasibility issue, we aim to enumer-
ate several sets of MUS to highlight multiple feasibility is-
sues found within the problem instance. Therefore, the pro-
posed enumeration strategy is based on MARCO (Liffiton
et al. 2016), a flexible algorithm for generating MUSes and
MSSes in succession.

Motivated by the domain of space mission scheduling,
we introduce and investigate the agent resource-constrained
project scheduling problem (ARCPSP), an extension of the
resource-constrained project scheduling problem (RCPSP)
that incorporates the delegation of tasks to differing agents.
This problem cannot be framed as an instance of the RCPSP
because it deals with the case of asymmetric agents in which
certain tasks may only be executed by a subset of the agents.
This problem is meant to model applications in which ef-
ficient scheduling for teams of differing agents is critical.
While we only explicitly investigate this problem, the gen-
erality of the approach outlined in this paper would allow the
methodology to be adapted for different types of constraint
satisfaction and optimization tools as well as different types
of planning and scheduling problems.

The main contributions of this paper are the following:
firstly, we provide a formal definition of the agent resource-
constrained project scheduling problem (ARCPSP) in Sec-
tion 3. Then in Section 4 we outline a difference logic en-
coding of the ARCPSP which is used to check feasibility of
problem instances. The framework for generating human-
understandable explanations of infeasibility for instances of
the ARCPSP is described in Section 5. Finally, we provide
an overview of the trade-off between interpretability and ex-
pressibility of different types of explanations and conclude
by discussing how these ideas can be extended.

2 Preliminaries and Definitions
In this section, we introduce relevant background informa-
tion and definitions used throughout the paper. These con-
cepts will set the stage for formulating the ARCPSP in terms
of satisfiability modulo theory and using minimal unsatisfi-
able sets and maximal satisfiable sets to generate explana-
tions of infeasibility.

2.1 Boolean Satisfiability
Let X be a set of variables and clauses C1, . . . , Cn be for-
mulas representing constraints over X . Consider a formula
of the form

ϕ =
∧

i=1,...,n

Ci. (1)

We say the formula ϕ is satisfiable if there exists some as-
signment to the variables in X which makes ϕ evaluate to
TRUE. Otherwise, it is unsatisfiable. Note that if ϕ takes the
form of equation (1), as it does throughout this paper, every
clause Ci must be TRUE in order for ϕ to evaluate to TRUE.
To implement the temporal constraints within a schedule,
the clauses Ci are taken from the theory of difference logic

(DL), which makes deciding ϕ a satisfiability modulo the-
ory (SMT) problem. To check satisfiability of problem in-
stances, we use the Microsoft Z3 SMT solver (De Moura
and Bjørner 2008).

2.2 Difference Logic
As will be discussed in Section 4, the agent resource-
constrained project scheduling problem (ARCPSP) can be
encoded in difference logic (DL), a fragment of linear real
arithmetic (LRA). The numerical components of DL are
solvable in polynomial time (Cotton and Maler 2006) using
graph-based procedures based on an incremental Bellman-
Ford algorithm. In general, decidability for DL using these
methods is more efficient than the simplex-based methods
used to decide LRA. Under DL, atoms are restricted to the
form

x− y ≤ k for x, y ∈ X, k ∈ R. (2)

However, we can rewrite the following atoms in difference
form:

• x− y ≥ k ≡ (y − x ≤ −k)
• x− y = k ≡ (x− y ≤ k) ∧ (x− y ≥ k)

• x = y ≡ x− y = 0

Bounds x ≤ k can also be incorporated by writing them as
x− x0 ≤ k where x0 is a special variable that is later set to
zero.

2.3 Minimal Unsatisfiable and Maximal
Satisfiable Sets

Definition 1. A minimal unsatisfiable set (MUS) of a set
C of constraints is a subset M ⊆ C such that M is unsat-
isfiable and every proper subset M ′ ⊂ M is satisfiable. A
maximal satisfiable set (MSS) of a set C of constraints is a
subset M ⊆ C such that M is satisfiable and every proper
superset M ′, with C ⊇ M ′ ⊃ M , is unsatisfiable. A min-
imal correction set (MCS) of a set C of constraints is the
complement of some maximal satisfiable set of C, and can
be understood as a minimal set of constraints which need to
be removed from C in order to make it satisfiable.

It is important to note that MUSes, MSSes, and MCSes
are only locally maximal (or minimal), and are different
from concepts of globally optimal subsets. MUSes can be
understood as isolated, infeasible subsets of the constraints.
Their primary characteristic is that removing any single con-
straint would make the set satisfiable. However, this does not
necessarily guarantee the feasibility of the entire set of con-
straints because there might be many disjoint MUSes within
the set. In order to make the entire set feasible (satisfiable),
a hitting set of the MUSes must be removed. Every MCS is
precisely one combination of such a hitting set.

Definition 2. A background of a set C of constraints is a
subset B ⊆ C of hard constraints, which must be necessar-
ily satisfied. In the context of scheduling problems, back-
grounds typically include constraints that ensure that the
outcome of the schedule is logical, including conditions such
as tasks not overlapping and resource constraints not being
exceeded. We denote everything outside of the background

M \ B as the foreground. Hence, the background and fore-
ground partition the set C of constraints.

A minimal conflict of an over-constrained set C of con-
straints with respect to a background B is then a subset of
the foreground M ⊂ C \B such that M ∪B is unsatisfiable
and, for any superset M ′ ⊃M , M ′∪B is satisfiable. A min-
imal relaxation of an over-constrained set C of constraints
with respect to a background B is a subset of the foreground
M ⊂ C \B such that (C \M)∪B is satisfiable and, for any
superset M ′ ⊃ M , (C \M ′) ∪ B is unsatisfiable. Then an
explanation is a sequence of minimal conflicts and minimal
relaxations for a problem instance.

The definitions of minimal conflicts and minimal re-
laxations mirror the concepts of MUSes and MCSes, re-
spectively, while incorporating a background of constraints
which cannot be modified. A background is necessary for
specifying hard constraints which cannot be relaxed or mod-
ified. This way we can prevent certain constraint from con-
sideration for conflicts or relaxations. A background also al-
lows the generation of explanations concerning different as-
pects of a scheduling problem instance, a concept which will
be explored later in the paper.

3 Problem Description
The problem that we formulate is an extension of the
resource-constrained project scheduling problem (RCPSP).
Loosely, the RCPSP considers nonpreemptive, precedence-
constrained tasks of known durations that are constrained
by reusable resource requirements (i.e. resources that are re-
turned after a task stops using them). The agent resource-
constrained project scheduling problem extends the RCPSP
to include a set number of agents that execute the tasks in
parallel, subject to certain compatibility constraints. Addi-
tionally, while the RCPSP generally cares about optimizing
the total makespan of the schedule, we instead introduce a
set start and end time for each scheduling instance and only
focus on its feasibility (i.e. whether or not all tasks can be
completed within this specified time frame).

3.1 The Agent Resource-Constrained Project
Scheduling Problem

An instance of an agent resource-constrained project
scheduling problem (ARCPSP) is defined by a tuple
(M,J, s, p, U,E,R,B, b), where the components are de-
fined as follows.

– M = {M1,M2, · · · ,Mm} is a set of agents.

– J = {J1, J2, · · · , Jn} is a set of non-preemptive (unin-
terruptible) tasks.

– s = [(a1, b1), (a2, b2), · · · , (an, bn)] are the allowable
time ranges in which the tasks should be executed, where
ai, bi ∈ N.

– p = [p1, . . . , pn] is a vector of the durations of tasks J ,
where pi is the duration of task Ji.

– U = {U1, U2, · · · , Un} is the compatibility set for the
tasks. Each task Ji can be completed by a subset Ui ⊆M
of agent.

– E ⊆ J × J is a set of precedence relations. (Ji, Jj) ∈ E
if and only if task Ji must terminate before task Jj begins.
Precedence relations must be defined in a consistent way
(by respecting the transitive property).

– R = {R1, R2, · · · , Rq} is a set of reusable resources.

– B ∈ Nq represents the total availability of the resources
R. The tasks that share resource Bi are mutually exclusive
if Bi = 1.

– b ∈ Nn×q represents the resource demands of tasks where
task Ji requires bi,j units of resource Rj during its execu-
tion. The total demand of resource Rj at anytime cannot
exceed its total availability Bj .

A schedule (S,A) = ({S1, S2, · · · , Sn}, {A1, A2, · · · , An})
is a solution to an instance of an ARCPSP, where Si and
Ai are the start time and the assigned agent of task Ji, re-
spectively. A schedule is feasible if it satisfies the following
constraints:

• No agent has overlapping tasks,(
Si + pi ≤ Sj

)
∨
(
Sj + pj ≤ Si

)
(3)

∀i, j ∈ (1, . . . , n) such that Ai = Aj .

• Every task falls within its allowable time frame(
si,1 ≤ Si

)
∧
(
Si + pi ≤ si,2

)
∀Si ∈ S. (4)

• The activities are assigned to compatible agents

Mi ∈ Ui ∀Mi ∈ A. (5)

• The precedence relations are met

Si + pi ≤ Sj ∀(Ji, Jj) ∈ E. (6)

• The resource constraints are satisfied, let Jt = {Ji ∈
J | Si ≤ t < Si + pi} represent the set of tasks being
executed at time t, then∑

Ji∈Jt

bi,j ≤ Bj ∀Rj ∈ R, ∀t ≥ 0. (7)

4 SMT Formulation
The constraints of the ARCPSP can be formulated in terms
difference logic in the following way. Constraint (3) can be
rewritten as

(Si − Sj ≤ −pi) ∨ (Sj − Si ≤ −pj) ∨ ¬(Ai = Aj) (8)

∀Si, Sj ∈ S. Constraint (4) can be rewritten as

(si,1 ≤ Si) ∧ (Si ≤ si,2 − pi) ∀Si ∈ S, (9)

and constraint (6) can be rewritten as

Si − Sj ≤ pi ∀(Ji, Jj) ∈ E. (10)

By representing the agents as integers Mi ∈ N, constraint
(5) can be rewritten as∨

u∈Ui

Mi = u ∀Mi ∈ A (11)

Figure 1: A feasible solution to Example 1.

Encoding the resource constraints is slightly more challeng-
ing. For mutually exclusive constraints (Bi = 1), the tasks
that share a resource can simply be encoded as not being al-
lowed to be executed at the same time. That is, constraint (7)
can be rewritten as

(Si − Sj ≤ −pi) ∨ (Sj − Si ≤ −pj) (12)

∀bi,k, bj,k = 1,∀Rk ∈ R. We can generalize this idea to
non-mutually exclusive constraints through the concept of
minimal forbidden sets. First introduced by (Möhring and
Stork 2009), forbidden sets are unsatisfiable sets with re-
spect to resource constraints only. They represent the sets of
tasks that cannot be simultaneously scheduled because they
would otherwise exceed the availability of some resource
constraint. The essential feature of a minimal forbidden set
is that a single task can be rescheduled to another time to
make the set respect the resource constraint.

Therefore, given a minimal forbidden set J∗, we would
like to encode a constraint requiring that they cannot all be
executing at the same time∨

Ji∈J∗

¬(Ji ∈ Jt) ∀t ≥ 0 (13)

where Jt = {Ji ∈ J | Si ≤ t < Si + pi} represents the set
of tasks being executed at time t. This encoding is similar to
methods which encode the RCPSP in terms of linear arith-
metic (Bofill et al. 2016), but this requires discretizing time
and incurs a cumbersome number of constraints if there are
a large number of time-points. Moreover, equation (13) can-
not easily be formulated in terms of difference logic. Instead,
we can reformulate the constraint as there being at least two
tasks in J∗ that do not overlap∨

Ji∈J∗

∨
Jj∈J∗

(Ji + pi ≤ Jj) ∨ (Jj + pi ≤ Ji) (14)

for every minimal forbidden set J∗. This constraint is logi-
cally equivalent to requiring that at any time-point, there be
at least one task in each minimal forbidden set that is not
being executed.

Constraining all of the minimal forbidden sets, a subset
of all of the forbidden sets, is sufficient to prevent resource
conflicts because every forbidden set is a superset of some
minimal forbidden set. Algorithms exist for computing all

minimal forbidden sets (Stork and Uetz 2005) so we will
not discuss such a computation here.

Encoding resource constraints as forbidden sets is effi-
cient in the context of the ARCPSP in comparison to other
methods, such as equation (13). This is primarily because
of the computational advantage achieved by difference logic
over other theories such as linear real arithmetic and the en-
coding not requiring a discretization of time. Representing
resource constraints as minimal forbidden sets also provides
an explicit representation of resource constraints in terms of
MUSes. If a resource constraint appears in an explanation,
we can represent it as the minimal forbidden set which is
being violated. For example, if a resource constraint consti-
tutes a component of some MUS, it will be represented as
some subset {A,B,C} of tasks, meaning that tasks A,B,
and C cannot be scheduled at the same time because they
would violate a resource constraint.
Example 1. Scheduling astronauts aboard the ISS
We model the problem of scheduling astronauts aboard the
International Space Station (ISS) as an instance of the AR-
CPSP for which the elements of M = {M1,M2, · · · ,Mm}
represent the crew members. We consider the case of m = 6
astronauts. The bounds on task execution are from minute
120 to 840; the sleeping related tasks outside of this bound
are fixed so are not a part of the problem instance. The avail-
ability of the power resource, is 1000 units. The tasks are
divided into different categories:
– There are 6 laboratory tasks, each of duration 120

with allowable time ranges of (120, 840), the entire
work day. However, they have precedence constraints
{(JLi , JLi+1) | 1 ≤ i < 6}, each laboratory task must
be completed before the next one begins. Each laboratory
task can be completed by any astronaut, so the compati-
bility set is all of the astronauts. Each laboratory task also
has a power requirement of 400 units.

– There are m weights and m treadmill tasks, one for each
agent, each of duration 75. They have allowable time
ranges of (180, 720). Each weight and treadmill task must
be completed by a unique astronaut so their compatibil-
ity sets can be specified by letting the ith task only be
completed by astronaut Mi. However, there is only one
set of weights and treadmill equipment, so we can de-
fine reusable resources RW and RT both with availability

BW , BT = 1, respectively. Each treadmill task also has a
power requirement of 200 units.

– There are m meal tasks. They have allowable time ranges
of (420, 540). Similar to the exercise tasks, each one must
be completed by a unique astronaut so their compatibility
sets can be specified by letting the ith meal task only be
completed by astronaut Mi.

– Several miscellaneous tasks, deploy cubesat, col-
lect sample, hardware gather, and eva suit test with
durations 60, 60, 120, and 120 respectively, do not fall
into any particular group. These tasks have an allowable
time range of (120, 840) and can all be completed by
any astronaut. They require 400, 500, 400, 400 units of
power, respectively.

A feasible schedule for this instance of the ARCPSP is visu-
alized in Figure 1.
Example 2. An Infeasible Modification
We modify the previous example slightly to produce an
unsatisfiable problem instance. If we change the duration
of each laboratory task from 120 to 121, we get an over-
constrained system of constraints for which no feasible
schedule exists. We’ll use this running example to produce
explanations in the next several sections.

5 Subset Enumeration:
Finding Conflicts and Relaxations

The proposed strategy for enumerating subsets is based on
MARCO (Liffiton et al. 2016) over other systems such as
CAMUS (Liffiton and Sakallah 2008) because outputting at
least some MUSes quickly is more important than explicitly
generating every MUS. MARCO relies on four main func-
tions to explore the feasibility of a power set lattice of con-
straints which we outline here in the language of conflicts
and relaxations.
– BlockUp - Called whenever a conflict is found. Marks

every supersets of the current set, preventing it from being
explored later on.

– BlockDown - Called whenever a relaxation is found.
Marks every subsets of the current set, preventing it from
being explored later on.

– Grow - If the current set is satisfiable, adds constraints
to the current set until adding any other constraint would
make it unsatisfiable.

– Shrink - If the current set is unsatisfiable, removes con-
straints from the current set until removing any other con-
straint would make it satisfiable.

A power set lattice of Boolean variables representing each
constraint in the foreground is maintained throughout the
execution of the algorithm. First, a random subset of con-
straints is constructed by choosing a point in the Boolean
lattice. Then the SAT solver checks whether the set is SAT
or UNSAT. If the resulting assignment is SAT (feasible),
then constraints are iteratively added to the current set un-
til a minimal relaxation is found. If the initial set is instead

{C1, C3, C4}

{C3, C4} {C1, C4} {C1, C3}

{C4} {C3} {C1}

∅

Figure 2: The power set lattice of {C1, C3, C4} with
background C2 and corresponding relaxation (green)
and conflict (red).

UNSAT (infeasible), constraints are iteratively removed un-
til a minimal conflict is found. After a minimal conflict is
found, BlockUp is called, removing any supersets of the
minimal conflict from consideration in the lattice. We can
do this because any superset of a conflict must be unsatis-
fiable because it contains the conflict. The opposite direc-
tion also applies, any subset, after a minimal relaxation has
been removed, must be satisfiable so we can rule them out
of consideration. Hence, after a minimal relaxation is found,
we BlockDown, removing any subsets from consideration
in the lattice. Then a new satisfying assignment is pulled
from the remaining sections of the boolean lattice and new
conflicts and relaxations are generated until the entire lattice
is blocked or the algorithm times out.

Example 3. A Small Over-Constrained Formula

Consider the unsatisfiable conjunction of the following set
of clauses,

C1 = {a}, C2 = {¬a}, C3 = {¬a ∨ b}, C4 = {¬b}

with background B = {C2}. We’ll use this example to step
through an execution of the subset enumeration algorithm.
A visualization of the associated Boolean lattice is shown
in Figure 2. A random initial seed has us start with clause
{C1, C3} and the SAT solver says it’s UNSAT. We then
Shrink and remove C3 from the set and the SAT solver says
{C1} is still UNSAT and minimal. We then output this mini-
mal conflict {C1}. Because this set is now minimal, we can
BlockUp, removing supersets {C1}, {C1, C3}, {C1, C4},
{C1, C3, C4} from consideration. We then choose a new
seed, let’s say {C3}. The resulting set is SAT so we Grow to
the set {C3, C4} which is then SAT and maximal so we can
BlockDown subsets {C4}, {C3}, {∅} and output {C1}, the
complement of {C3, C4}, as a relaxation. The lattice is then
entirely blocked off so we terminate with the single conflict
and relaxation. Figure 2 shows the power set lattice of the
foreground along with the corresponding relaxation (green)
and conflict (red).

5.1 Background Constraints for the ARCPSP
The standard background for the ARCPSP involves con-
straints to ensure that the resulting schedule is logical. This
way, the foreground only involves constraints which can be
altered by parameters that are controlled by the user.

– New variables S0 and Sm+1 are introduced that mark
the beginning and end of the schedule bounds. These
variables prevents the subset enumeration from relaxing
the temporal constraints of tasks outside of the feasible
bounds of the schedule

(S0 ≤ Si) ∧ (Si + pi ≤ Sn+1) ∀Si ∈ S. (15)

– Each task is assigned to some existing agent. Without this
constraint, the solver could assign tasks to a nonexistent
agent to solve conflicts

Mi ∈M ∀Mi ∈ A. (16)

– No agent has overlapping activities. Disallowing the
solver from consider cases in which tasks can overlap pre-
vents it from generating meaningless results. This condi-
tion is precisely constraint (3).

We will refer to this background set of constraints through-
out the following section.

5.2 Constraint Explanations
The method of generating minimal conflicts and relaxations
can be applied to both sets of individual constraints and, by
modifying the background, sets of tasks. In this section, we
investigate the first case, which we call constraint explana-
tions. Following the strategy in the beginning of Section 5,
we enumerate only over the constraints that are in the fore-
ground, as specified in Section 5.1. That is, we consider con-
straints timeframe, compatibility, precedence,
and resource referring to equations (4), (5), (6), and (7),
respectively, for each task in the schedule. The rest of the
constraints are implied as a part of the background because
they only correspond to imposing a logical structure on the
solution, not constraining the parameters of the schedule.
Hence, the Boolean lattice which is enumerated over con-
tains only these four types of constraints.

The outputs for constraint explanations are formatted as
a tuple of the relevant tasks followed by a constraint type.
For example, (LAB 0, LAB 1) precedence refers to
the precedence constraint between the first and second lab-
oratory tasks. When a constraint is only relevant to a sin-
gle task, we write the task followed by the constraint type
(e.g., MEAL 0 compatible refers to the agent compati-
bility constraint for the first meal task).

The full constraint explanation for Example 2 includes 14
minimal relaxations and 3 minimal conflicts. Figure 3 shows
a representative part of this full constraint explanation. The
omitted conflicts and relaxations are identical in structure to
the ones shown in Figure 3 and give practically redundant
information. Computing the set of minimal forbidden sets
took 2.11 seconds and calculating the full explanation took
1.57 seconds.

Constraints
Confl 1 {(LAB 0,LAB 1) precedence,

(LAB 1,LAB 2) precedence,
(LAB 2,LAB 3) precedence,
(LAB 3,LAB 4) precedence,
(LAB 4,LAB 5) precedence }

Relax 1 {(LAB 3, LAB 4) precedence}
Confl 2 {(LAB 1,LAB 2) precedence,

(LAB 2,LAB 3) precedence,
(LAB 3,LAB 4) precedence,
(LAB 4,LAB 5) precedence,
MEAL 0 compatible,
MEAL 1 compatible,
MEAL 2 compatible,
MEAL 3 compatible,
MEAL 4 compatible,
MEAL 0 timeframe,
MEAL 1 timeframe,
MEAL 2 timeframe,
MEAL 3 timeframe,
MEAL 4 timeframe}

Relax 2 {(LAB 4, LAB 5) precedence,
MEAL 4 timeframe}

Figure 3: Constraint explanations for Example 2.

In this example, relaxations provide the user with minimal
ways in which constraints could be changed to fix the sched-
ule. Meanwhile, conflicts give insight into why infeasibility
is occurring. For example, Relex 1 indicates that remov-
ing the precedence between laboratory task 3 and 4 would
make the schedule feasible. However, Confl 1 indicates
that the precedence between all of the laboratory tasks does
not fit in the schedule. A user could use this latter informa-
tion to alter the original parameters of the schedule rather
than having to void an entire task or constraint. One possi-
ble solution could be extending the length of the schedule
or shortening the length of some of the laboratory tasks, an
option which is not revealed by relaxations alone.

This formulation of explainability in terms of conflicts
and relaxations also allows a user to ask pointed questions
concerning the feasibility of an instance of an ARCPSP
problem. Given a feasible instance of a problem, such as
Example 1, specific questions may be asked about infeasible
modifications of the problem. The modification in Example
2 is gotten by extending the lengths of the laboratory tasks.
Hence, the explanation in Figure 3 may be interpreted as an
answer to the question: “why can the laboratory tasks not
have a duration longer than 120 minutes?”

5.3 Implication-Based Enumeration
In the following sections we explore two variations of the
subset enumeration algorithm to generate higher-level de-
scriptions of infeasibility. This is accomplished by pushing
every constraint to the background and populating the fore-
ground with a fresh set of Boolean variables. Then, a set
L of constraints can be constructed that encodes a logical

relationship between the new symbolic variables in the fore-
ground and the actual constraints in the background.

The set L of logical relations linking symbolic variables to
the constraints also becomes part of the background. Then,
only the set of Boolean variables remains to be enumerated
over in the foreground. In practice, this can be accomplished
by replacing the Boolean lattice outlined in Section 5 by the
symbolic lattice composed of the new variables. This en-
ables the generation of explanations concerning these sym-
bolic variables, which is dependent on the relationship L.

Depending on what kinds of constraints populate the fore-
ground, the size of the Boolean lattice which needs to be
enumerated over can be greatly reduced. This reduces the
number of calls that need to be made to the SMT solver
before arriving upon conflicts and relaxation. Additionally,
these type of explanations can reduce redundancies and pro-
duce more compact descriptions of infeasibility. The follow-
ing section outlines how this concept can be applied to gen-
erate minimal conflicts and relaxations of sets of tasks.

5.4 Task Explanations
Task explanations can be generated by replacing the fore-
ground (and hence, the power set lattice) with a set of vari-
ables representing individual tasks. We introduce a Boolean
variable for each task and separate the constraints of the
ARCPSP into two classifications: individual and relational.
Constraints (4) and (5) as well as constraints (15) and (16)
are individual constraints, involving only a single task. Con-
straints (6), (7), and (3) are relational constraints, involving
multiple tasks. We then encode the constraint that the truth
of each task’s Boolean variable Jj implies the truth of every
one of its individual constraints

Jj =⇒ Ij (17)
where Ij represents a conjunction of the task’s timeframe
(4), compatibility (5), and feasibility (15, 16) constraints.
Visually we can represent the implication as follows, where
LAB 1 represents a Boolean variable and arrows represent
logical implications:

LAB 1

LAB 1 compatible

LAB 1 timeframe

LAB 1 feasibility

For the relational constraints, we add the condition that the
truth of all of the dependent tasks’ Boolean variables implies
its truth. So if relational constraint C1 is between task J1 and
J2, then we impose the constraint J1 ∧ J2 =⇒ C1 in the
same manner as outlined above:

LAB 1
∧

LAB 0
)(

(LAB 0, LAB 1) precedence

(LAB 0, LAB 1) resource

(LAB 0, LAB 1) overlap

Tasks
Confl 1 {LAB 0, LAB 1, LAB 2, LAB 3,

LAB 4, LAB 5}
Relax 1 {LAB 1}
Confl 2 {LAB 1, LAB 2, LAB 3, LAB 4,

LAB 5, MEAL 0, MEAL 1, MEAL 2,
MEAL 3, MEAL 4}

Relax 2 {LAB 5, MEAL 0}

Figure 4: Task explanations for Example 2.

Hence, individual constraints need only be satisfied if their
associated task’s Boolean variable is true and relational con-
straints need only be satisfied if all of their associated tasks’
Boolean variables are true. Through this logical relationship,
we can now enumerate over these Boolean variables, each of
which conceptually represents a task. As the Boolean vari-
ables are toggled on and off, the associated constraint lattice
becomes constrained as if the schedule had been constructed
with only that subset of tasks. Executing the enumeration
algorithm over this modified foreground for the same over-
constrained problem (Example 2) produces a similar set of
conflicts and relaxations, part of which is shown in Figure 4.
The full explanation includes 3 minimal relaxations and 17
minimal conflicts in total. It took 4.03 seconds to compute
the minimal forbidden sets and 0.55 seconds to compute the
full explanation.

Here, the task and constraint explanations are quite sim-
ilar, but this is not always the case. The task explanations
can often be much more compact than the constraint expla-
nations because each variable represents many constraints.
For similar reasons, the number of total conflicts and relax-
ations is often greatly reduced. Because of this, task expla-
nations can give more straight forward explanations for the
over-constrained problem, but they lack the granularity of
the constraint explanations. For example, with the constraint
explanations we were able to diagnose that the precedence
between the lab tasks was creating an issue rather than a re-
source or other constraint. The task explanations leave out
this detail, sacrificing expressibility for interpretability.

5.5 Specification Explanations
In order to draw explanations back to a high-level interpre-
tation of the problem, the foreground can be replaced by a
set of human-written specifications. This further reduces the
size of the power set lattice that is constructed out the fore-
ground and reduces redundancy in the generated conflicts
and relaxations.

Tasks are often formed in groups which share certain
scheduling specifications. For example, the meal tasks in
Example 1 all share the same parameters except that they
are assigned to unique astronauts. When Example 1 was de-
scribed, such similar tasks were naturally formulated in dif-
ferent categories (e.g., meal, weights, etc.). Hence, specifica-
tions for tasks may be more succinctly expressed by making
use of these similarities.

An informal, human written list of constraints specifying

Specifications
Confl 1 {Lab tasks must happen in

sequence, the scheduling
horizon is 6am to 6pm}

Relax 1 {Lab tasks must happen in
sequence}

Relax 2 {The scheduling horizon is
6am to 6pm}

Figure 5: Specification explanations for Example 2.

the parameters of Example 1 could be as follows:

– The scheduling horizon is 6am to 6pm.

– Meal tasks must be scheduled between 1pm and 2pm.

– Lab tasks must happen in sequence.

– Each meal/treadmill/weights task must be assigned to a
different astronaut.

– Weights/treadmill tasks cannot happen 60 minutes before
pre-sleep.

– No more than 1000 units of power may be drawn at once.

– The treadmill tasks require 200 units of power.

– Tasks EVA SUIT TEST, HW GATHER, C-SAT, and
SAMP require 400, 400, 500, and 400 units of power.

– There is only one set of weights and treadmill equipment.

Then a relevant logical relationship may be drawn back
to the actual set of constraints for each such specification.
For example, the precedence relations between the lab tasks
could be related through:

“Lab tasks
must happen
in sequence.”

(LAB 0, LAB 1) precedence

(LAB 1, LAB 2) precedence

(LAB 2, LAB 3) precedence

(LAB 3, LAB 4) precedence

(LAB 4, LAB 5) precedence

(LAB 5, LAB 6) precedence

Similar constraints may be encoded for the rest of the spec-
ifications, which compose the set L linking the human writ-
ten specifications to the actual constraints of the problem.
This construction allows the generation of specification ex-
planations. The specification explanation for Example 1 is
displayed in Figure 5. Notice the greatly reduced size of the
specification explanation. Unlike the constraint and task ex-
planation, the specification explanation does not suffer from
producing many redundant conflicts and relaxations.

A fundamental trade-off exists between the expressibil-
ity and interpretability of different kinds of explanations.
Low-level explanations involving constraints provide de-
tailed reasons for infeasibility but may be difficult for a hu-
man user to parse or understand. In contrast, because the

high-level specification explanations correlate directly with
the types of constraints which a human planner may think
in, they potentially provide more direct and concise infor-
mation to the user. However, they lack the fine tuned gran-
ularity of information that constraint and task explanations
provide. For example, if only a single precedence constraint
between the laboratory tasks was causing an issue, the spec-
ification explanation would obscure which of the constraints
is responsible.

6 Conclusion

We introduced the agent resource-constrained project
scheduling problem (ARCPSP) along with an associated dif-
ference logic encoding. We proposed a general framework
for generating minimal conflicts and minimal relaxations
based on the MARCO algorithm and demonstrated how it
could be used to generate varying types of descriptions for
why infeasibility is occurring in instances of the ARCPSP.
The framework outlined in this paper is general enough to
be applied to constraint satisfaction formulations for various
other scheduling and planning problems. These ideas may
potentially be further extended to different kinds of formal
languages, such as linear temporal logic, that are used to de-
scribe planning problems.

6.1 Future Work

In an interactive system, such as a scheduling software,
when a user attempts to make an infeasible modification, it
may be useful to generate a reason for the infeasibility in
real time. Similarly, a user could query whether a modifica-
tion to a feasible schedule would preserve feasibility and, if
not, why not? Explanations similar to the ones constructed
throughout this paper may likely be used to such an effect.
Investigating methods for synthesizing natural language sen-
tences out of the explanations is also subject to future re-
search.

Following the goal of QuickXplain (Junker 2004), given
a partial ordering of constraint or task importance, preferred
conflicts and relaxations may be explored earlier and full
explanations may list conflicts and relaxations in preferen-
tial order. Such functionality would be especially useful in
cases for which generating the full explanation is intractable.
A preferential ordering of explanations may be achieved
by adding and removing constraints during the Grow and
Shrink steps based on the constraint preference ordering.
Similarly, methods for enumerating disjoint (or otherwise
distinct) conflicts may also be useful for producing a rep-
resentative set of conflicts as concisely as possible.

Currently, the most limiting bottleneck for scaling to
larger problem instances comes from the number of minimal
forbidden sets which can grow exponentially with the num-
ber of tasks. Certain lazy clause generation algorithms (La-
borie 2003) may be used to represent resource constraints in
a more efficient manner. Such representations may also be
adapted to implement consumable resources in an explain-
ability setting.

References
Bofill, M.; Coll, J.; Suy, J.; and Villaret, M. 2016. Solv-
ing the multi-mode resource-constrained project scheduling
problem with SMT. In 2016 IEEE 28th International Con-
ference on Tools with Artificial Intelligence (ICTAI), 239–
246.
Burt, C.; Klimova, K.; and Primas, B. 2018. Generating
explanations for mathematical optimisation: Solution frame-
work and case study. In ICAPS 2018 Workshop on Explain-
able Planning (XAIP).
Cotton, S., and Maler, O. 2006. Fast and flexible difference
constraint propagation for dpll(t). In Biere, A., and Gomes,
C. P., eds., Theory and Applications of Satisfiability Testing
- SAT 2006, 170–183. Berlin, Heidelberg: Springer Berlin
Heidelberg.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient
SMT solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, 337–340. Berlin, Heidelberg:
Springer-Verlag.
Freuder, E. C., and Wallace, R. J. 1996. Partial constraint
satisfaction. In Jampel, M.; Freuder, E.; and Maher, M.,
eds., Over-Constrained Systems, 63–110. Berlin, Heidel-
berg: Springer Berlin Heidelberg.
Junker, U. 2004. Quickxplain: Preferred explanations and
relaxations for over-constrained problems. In AAAI.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in ai planning and scheduling: Existing approaches
and new results. Artificial Intelligence 143(2):151 – 188.
Liffiton, M. H., and Sakallah, K. A. 2008. Algorithms
for computing minimal unsatisfiable subsets of constraints.
Journal of Automated Reasoning 40(1):1–33.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva,
J. 2016. Fast, flexible mus enumeration. Constraints
21(2):223–250.
Möhring, R., and Stork, F. 2009. Stochastic project schedul-
ing under limited resources: A branch and bound algorithm
based on a new class of policies.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2013. Making hybrid plans more clear to human users —
a formal approach for generating sound explanations. In
Proceedings of the Twenty-Second International Conference
on International Conference on Automated Planning and
Scheduling, ICAPS’12, 225–233. AAAI Press.
Stork, F., and Uetz, M. 2005. On the generation of circuits
and minimal forbidden sets. Math. Program. 102(1):185–
203.

Model-Free Model Reconciliation

Sarath Sreedharan, Alberto Olmo Hernandez, Aditya Prasad Mishra and
Subbarao Kambhampati

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ 85281 USA
{ ssreedh3, aolmoher, amishr28, rao }@ asu.edu

Abstract
Designing agents capable of explaining complex
sequential decisions remains a significant open
problem in human-AI interaction. Recently, there
has been a lot of interest in developing ap-
proaches for generating such explanations for var-
ious decision-making paradigms. One such ap-
proach has been the idea of explanation as model-
reconciliation. The framework hypothesizes that
one of the common reasons for a user’s confusion
could be the mismatch between the user’s model
of the agent’s task model and the model used by
the agent to generate the decisions. While this is a
general framework, most works that have been ex-
plicitly built on this explanatory philosophy have
focused on classical planning settings where the
model of user’s knowledge is available in a declar-
ative form. Our goal in this paper is to adapt the
model reconciliation approach to a more general
planning paradigm and discuss how such methods
could be used when user models are no longer ex-
plicitly available. Specifically, we present a sim-
ple and easy to learn labeling model that can help
an explainer decide what information could help
achieve model reconciliation between the user and
the agent with in the context of planning with
MDPs.

1 Introduction
A significant barrier to integrating AI systems into our daily
lives has been their inability to interact and work with us
humans in an intuitive and explicable manner. Orchestrating
such interactions would require the agents to have the ability
to help users in the loop better understand the rationale behind
their various actions. Thankfully there has been a lot of effort
within the AI research community to develop systems capa-
ble of holding explanatory dialogues with users and thus help
them understand the decisions under question [David W. Aha
and Magazzeni, 2018; Daniele Magazzeni, 2018]. Such ex-
planatory systems could help users resolve confusions regard-
ing agent decisions that may stem from either a (1) lack of
understanding (or even misunderstanding) of the task or (2)
from their inferential limitations. While many earlier works

Figure 1: A general overview of the explanation as model reconcili-
ation.

in explanation have generally focused on the latter (cf. [Khan
et al., 2009; Hayes and Shah, 2017; Seegebarth et al., 2012;
Topin and Veloso, 2019]), there is a growing consensus on the
importance of explanatory mechanisms that can help bridge
the knowledge asymmetry between the system and the user.

In particular, in explanation as model-reconciliation
[Chakraborti et al., 2017] we had studied the problem of rec-
onciling knowledge asymmetries between the user and the
agent within the context of planning. Works in this direction
have generally looked at cases where the user’s model of the
task (i.e their belief about the initial state, the transition dy-
namics, and the goal) is known beforehand (in a representa-
tion scheme comparable to the one used by the agent) and do
not match the agent’s model. This mismatch means that the
user would not be able to correctly evaluate the validity or
the optimality of a given plan. Thus in this paradigm the ex-
planations consist of information about the agent’s model that
the user could incorporate into his/her own model to correctly
evaluate the plan in question.

Unfortunately, it is not always possible to have access to
such models. In the most general case, we are dealing with
the user’s model of the agent and hence the user may not be
capable of presenting traces or decisions that could be gener-
ated from this model. Even if the system tries to learn such
a representation based on interactions with the user, there is
no guarantee that the specific representational assumptions of
the learned model and the vocabulary used would be satisfied
by the user’s mental model.

The definition of explanation as model reconciliation may
leave one with the idea that there is no way around it. How
could one ever truly perform effective reconciliation when
there exists no user model guiding us to choose the parts of
the model, which when revealed to the user will help them
correctly evaluate the current decision? Are we left with re-
vealing the entire agent model to the user as the only option?
In this paper, we propose a simple and intuitive way we could
still generate minimal explanations in the absence of declara-
tive models. We argue that we could drive such explanations
by using learned models that can predict how human expec-
tations could be affected by possible explanations (derived
completely from information about the agent model) and in
fact show how this method could be viewed as a variation of
previous approaches that have been put forth to identify ex-
plicable behavior.

We will start by extending model reconciliation to the more
general setting of planning with Markov Decision Processes
(Section 4). The rest of the paper will investigate how these
ideas could be used when the human mental model of the task
is unavailable, and will formulate a learning problem that al-
lows us to learn simple models that could be used to identify
minimal explanations (Section 5). Finally, we will evaluate
our method on a set of standard MDP benchmarks and per-
form user studies to validate its viability (Section 6).

2 Background
Figure 1 presents a general schematic representation for
explanation as model reconciliation. The automated agent
(henceforth referred to as robot) starts with a modelMR that
can be used to generate a decision π (where depending on the
context, π may be a single action, plan, policy or a program).
In this setting,MR

h corresponds to the human’s preconceived
notions about the robot model. The explainer’s job then be-
comes providing information about the modelMR, such that
the updated human model can correctly evaluate the validity
of the robot decisions.

In this case, the robot could have chosen to provide the
entire model, but for most realistic tasks, such models could
be quite large, so dumping the entire model could be both
unnecessary and impractical. It’s also well known that peo-
ple generally prefer explanations that are selective [Miller,
2018; Lombrozo, 2006]. Thus the users would be happier
with explanations that asks them to update a subset of be-
liefs as opposed to a complete update. Note that MR need
not be the original agent model, but rather some abstrac-
tion/approximation of the underlying robot model (that con-
serves some desired property of the decision like optimality
or validity). In [Chakraborti et al., 2017] where model recon-
ciliation was first introduced, MR was a classical planning
model hence inherently interpretable and thus the reconcili-
ation could easily be achieved, but the idea could be applied
beyond just planning models. For example, one could under-
stand the explanation methodology used by LIME [Ribeiro et
al., 2016] as being a special case of model reconciliation. In
their case, they assume the human model is empty andMR

is an approximation of the underlying decision model is au-
tomatically generated for each decision using a set of prede-

fined features.
In this work, we will be looking at the agents that

use discounted infinite horizon Markov Decision Processes
(or MDPs) [Russell and Norvig, 2003] as the decision
making framework. Each MDP M is defined by a tuple
〈S,A, T,R, γ, µ〉, where the S provides the set of possible
atomic states, A defines the set of actions, T is the transi-
tion function, R the reward, γ the discounting factor (where
0 ≤ γ < 1) and µ corresponds to the distribution of possible
initial states. T : S×A×S → [0, 1] provides the probability
that for given state s ∈ S, the execution of an action a would
induce a transition to a new state s′, and R : S×A×S → R
defines the reward corresponding to this transition. The solu-
tion concept in MDP takes the form of a policy π that maps
each state to a potential action. A policy is said to be op-
timal for M (denoted as π∗M) if there exists no other pol-
icy that dominates the given policy in terms of the expected
value of states (where the value of a state s under a policy
π for a model M is denoted as V πM(s)). Executing the pol-
icy in a state results in a sequence of state action state tu-
ples called execution trajectory or simply a trajectory, de-
noted as τ = 〈(s1, a1, s2), ..., (sn−1, an−1, sn)〉 and we will
use PM(τ |π) to denote the probability of sampling the given
trajectory τ for a policy π in modelM.

In the explanatory setting we are interested in, the robot
uses a modelMR = 〈S,A, TR, RR, γR〉 of the task to come
up with the policy to act on. For now we will assume this
MDP already defines an interpretable model and the human
uses a model MR

h = 〈S,A, TRh , RRh , γRh 〉 to evaluate it (we
will relax this assumption in later sections). Now the task
ahead of us will be to formulate how we could still identify
minimal information that could resolve user confusion when
MR

h , but before we can do that we need to reinterpret the
ideas of inexplicability and the idea of model reconciliation
that was defined in [Chakraborti et al., 2017] in the context of
MDPs and we will start by considering a simple scenario.

3 Illustrative Example
Consider a warehouse scenario, where a robot is tasked with
moving packages from racks and dropping them off at the
dispatch chute. The robot is powered by a battery pack that
can be recharged by visiting its docking station. The dock-
ing station also doubles as a quality assurance station that the
robot needs to visit whenever it picks up a box labeled #013
(which means the box is fragile). The robot’s operations are
mostly deterministic, apart from a small probability of slip-
ping (0.25) in some cells, that could leave the robot in the
same position.

Now suppose the warehouse has just hired a new part-time
employee to oversee the operations. The employee is just get-
ting used to this new setting and is puzzled by the robot’s de-
cision to once in a while take a detour from the drop-off ac-
tivity and visit a specific position of the factory floor (which
is, in fact, the docking location). If we wished the robot to be
explainable, then it would need to be capable of helping the
employee better understand the underlying model used by the
robot (i.e achieve some form of model reconciliation). Given
the fact that the robot may not have an exact model of the user,

one way to achieve this could be by providing robot’s entire
model to the user. Unfortunately, this could easily overwhelm
the user.

Another possibility could be to allow the user to specify
which robot actions appear inexplicable, and focus on provid-
ing facts relevant to those actions. This explanation may still
prove to be quite verbose and may in fact not help resolve
their confusion. For example, imagine a case where the robot
is visiting the station to recharge its batteries and the human
says that the visit action is inexplicable. Now even if the robot
mentions that visiting the station recharges it, the employee
may still be confused if they are under the incorrect assump-
tion that the robot is operating on full battery. Similarly, if the
human had expected the robot to go to the docking station
due to some confusion regarding the box codes, the human
may mark the robot decision to not go to the dropoff as being
inexplicable and the explanations that could resolve the con-
fusion may have little to do with that specific action marked
as inexplicable.

4 Explanation as Model Reconciliation For
MDPs

In this setting the human and robot models are captured as
MDPs defined over the same set of states and thus we can
characterize both models by the tuple θ = 〈θT , θR, θγ , θµ〉,
where the θT provides the set of parameters that defines
the transition probabilities P (.|s, a), while θR the parame-
ters corresponding to the reward function, θγ the parameters
corresponding to the discount factor and θµ the parameters
for the initial state distribution. For simple MDP models with
atomic states, θT contains parameters of the categorical dis-
tribution for each transition (θµ will contain similar parame-
ters for the initial state distribution), θR contains the reward
associated with each transition (an 〈s, a, s′〉 tuple) and θγ
just contains the value of the discount factor. The specific
instantiations of the parameters for each model M is cap-
tured as θ(M). For simplicity, we will denote each of the
unique parameters in the tuple θ using indexes. For example,
θs,aT (MR), will correspond to the parameters for the distribu-
tion P (.|s, a) for the modelMR.

If we use M to capture the set of all possible models and
Θ = θT × θR × θγ × θµ, then model reconciliation oper-
ation can be captured as a function E〈MR

h ,MR〉 : 2Θ → M
that takes in a set of model parameters and generates a new
version of the modelMR

h where the set of specified param-
eters will be set to values from MR. For example, M̂ =

E〈MR
h ,MR〉(θ

s1,a
T) will be a new model such that θ(M̂) will

be identical to θ(MR
h), except that θs1,aTM̂

, will be equal to
θs1,a
TR .

Practically, the model reconciliation operation corresponds
to the robot informing the human about some part of its
model. This communication could incur cost and we can cap-
ture this by using the cost function C : 2Θ → R that maps a
given set of a threshold to a cost.

Now the question we need to ask is whether the agent is
trying to explain its policy or if it is trying to explain some be-
havior (i.e an execution trace). Most of the earlier work that

looks at model reconciliation explanation (cf. [Chakraborti
et al., 2017; Sreedharan et al., 2018a; 2018b]) has looked at
sequential plans and has generally ignored this differentiation
and treated the problem of explaining plans to be same as that
of explaining behavior. In general, a given plan or policy com-
pactly represents a set of possible behaviors and the choice of
explaining behavior vs explaining the plans/policies could af-
fect the content of the explanation being given. For example,
when explaining policies there is the additional challenge of
presenting the entire policy to the user and the explainer may
need to justify action choices for extremely unlikely states or
contingencies. On the other hand, when explaining a given
set of behaviors the explainer needs to only justify their ac-
tion choices for cases they actually witnessed. For example,
when explaining traces from the warehouse scenario, given
the small probability of slipping, the robot may never have
to mention what to do when it slips, but on the other hand if
we are dealing with full policies, the agent may need to talk
about the states where the robot is in the slipped positions and
they need to get up from that position and move on.

Explaining policies or plans becomes more relevant when
we consider explanatory dialogues where the agent and the
user are trying to jointly come to agreement on what pol-
icy/plans to follow (eg: decision support systems), while the
latter may be more useful when the user is observing some
agent operating in an environment.

With respect to policies, we assume that the user is pre-
sented with the entire policy. A given policy is said to be ex-
plicable to the human, if the policy is optimal for the human
model. Therefore the goal of the explainer becomes that of
ensuring the optimality of the given policy
Definition 1. A set of parameters θE corresponds to a com-
plete policy explanation for the given robot policy π∗MR , if
the policy is also optimal for E〈MR

h ,MR〉(θE) and is said to
be the minimally complete policy explanation if there exists
no other complete explanation θE′ , such that, C(θE′) < C(θE)

Finding a complete policy explanation is relatively
straightforward (the set of all parameters automatically meets
this requirement). The more challenging case becomes that
of finding the minimal or the cheapest explanations i.e. the
minimally complete explanations. Such minimally complete
explanations can be calculated by adopting a search strategy
similar to [Chakraborti et al., 2017]. The search can start at
the human model and try to find the minimal number of pa-
rameters that needs to be updated in the human model for
the current policy to become optimal. Similar to generating
minimally complete explanations, i.e, we can also generate
monotonic explanations (i.e explanations where no further in-
formation about parameters in the robot model can affect the
optimality of the current plan).

In the case of policies, we can also describe explicable
planning and balancing cost of explanations with that of
choosing policies that are inherently explicable, where inex-
plicablity score (IE) of a policy π is defined as

IE(π,MR
h) = |E[V

MR
h

π∗ (s)|s ∼ µRh]−E[V
MR

h
π (s)|s ∼ µRh]|

Where π∗ is the optimal policy in the human model. Ex-
plicable planning thus becomes the problem of choosing

Figure 2: Subfigure (a) shows a visualization of a trajectory expected by the user described in the illustrative example, and (b) shows the
visualization of a trajectory the user may observe. Subfigure (c), shows the various explanatory messages that could be used in this scenario,
note that the messages span information from multiple abstractions of the given task

policies that minimize inexplicability score [Kulkarni et al.,
2016], while minimizing the potential loss in optimality due
to the policy choice (since the most explicable plan may
not be an optimal policy). Balanced planning, as studied in
[Chakraborti et al., 2019; Sreedharan et al., 2019], proposes
going one step further and also takes into account possible
savings in inexplicability score that can be achieved by pro-
viding explanation (while incurring additional cost of com-
municating the required explanations).

For explaining behavior, we will look at the simplest case,
namely the agent needs to explain a set of behaviors that the
user has just observed. We will assume that the observer has
full observability of the state and is seeing the robot behavior
for the first time. In such a setting, a given trace τ would
appear explicable to the user if it could be sampled from their
expected MDP policy (i.e a policy optimal in their model) or
more generally, i.e PMR

h
(τ |π) > δ, where δ is some small

threshold. 1

Definition 2. A set of parameters θE corresponds to a com-
plete behavior explanation for a set of traces T = {τ1, ...τn},
if ∀τ ∈ T, ∃π such that PE〈MR

h
,MR〉(θE)(τ |π) > δ and π is

an optimal policy for the model PE〈MR
h

,MR〉(θE). The expla-

nation is said to be the minimally complete behavior expla-
nation if there exists no other complete explanation θE′ , such
that, C(θE′) < C(θE)

Note that given the above definition, if δ is set very high
it may not be possible to find a complete explanation, as the
trace may genuinely contain low probability transitions. In
this work we will assume δ to be zero.

While model reconciliation could be an important compo-
nent of either policy or behavior explanation, the applicabil-

1We use δ in the general case to allow for the possibility that
people can be surprised by unlikely events of non-zero probability

ity of the model reconciliation explanations on their own for
policies is limited by the fact that in all but problems with
the smallest state spaces, the user would have trouble go-
ing over the entire policy. Thus in these settings, explanatory
systems would need to also utilize policy approximation or
summarization methods, then allow users the ability to drill
down on policy details as required. Since our main goals was
to focus on developing approaches that allow us to generate
model reconciliation explanations without explicitly defined
user models, the rest of the paper will mostly focus on behav-
ior explanation. In Section 8, we will have a brief discussion
on how these methods could potentially be extended to policy
explanation scenarios.

5 Explaining Without Explicit Human Mental
Models

Now we will look at how we can identify cheap complete
behavior explanations when the human model is unknown.
We will go one step further from identifying not only the
parameters that need to be explained, but also capturing the
right modality/abstractions to present the information about
the parameters. That is, we will no longer assume that the
human is using a full MDP model to come up with their deci-
sions. Instead, the robot starts with a set of explanatory mes-
sages Ψ = {m1,m2, ...,mn} that can be presented to the
user. Where the messages correspond to a set of parameter
values (the parameters corresponding to a set of messages
{m1, ..mk} is denoted as E({m1, ..mk})) of the model as
captured in some abstraction of this model and has a cor-
responding cost (C) associated with it. The abstractions to
consider may depend on the specific scenario and the previ-
ous information about the intended users (laypeople vs. ex-
perts). Some simple possibilities may be to consider qualita-
tive models (say non-deterministic ones instead of stochastic)

and considering state abstractions the given task. Note that,
technically E(Ψ), need not span the set of all possible model
parameters, but could rather be limited to a subset of param-
eters identified to be relevant to the given problem. One pos-
sible way may be to consider variations of explanation tech-
niques like MSE [Khan et al., 2009] to identify set of possible
factors that affect the optimality of each action. In Figure 2,
the subfigure (c) shows a set of possible explanatory mes-
sages for the warehouse domain, that consists of each param-
eter mapped to some english statement. For models captured
using factored representations that use relational or proposi-
tional fluents, such statements could be easily generated using
templates (cf. [Hayes and Shah, 2017]).

Given this setting, we will now make some simplifying as-
sumptions, namely, (1) the order in which the explanatory
messages are presented does not matter (2) we have access
to a set of observers with similar models and they share this
model with the target user (3) the robot is viewing the task at
the same level or at a more detailed level of granularity than
the user and (4) the user and robot have some shared vocabu-
lary in regards to the task. While assumption (1) is easily met
since we are mostly dealing with model information and (4)
is a prerequisite for most explanatory approaches, in section
8 we will discuss how we can possibly relax requirements (2)
and (3).

Now our goal is to learn a predictive model that is able
to predict whether a given user would find a given 〈s, a, s〉
tuple explicable and how the user’s perception changes with
the given explanatory messages.

For example, at the beginning of an episode the user may
be presented with the following explanatory messages, Ψ̂ =
{m1 = “Robot slips with probability 0.25 at grey cells”},
which corresponds to the fact that P (si|a, si) = 0.25, for
all states si where the feature grey cell is true and for
all actions a. Now the user will be presented with a se-
quence of transitions, say 〈(1, 2), right, (2, 2)〉 and asked
whether the transition was explicable or not. Then the tu-
ple 〈〈(1, 2), right, (2, 2)〉, {m1}, l1〉, where l1 is the label as-
signed by the user to the transition, becomes input to our
learning method.

The exact function that we would want to learn would be

L(〈s, a, s′〉, {m1, ...,mk}) =

1 if 〈s, a, s′〉 ∼

π∗E〈MR
h

,MR〉(θ({m1,...,mk})(s)

0 otherwise

Note that this is a modified version of the sequential model
we introduced in [Zhang et al., 2017] for identifying whether
a given plan is explicable or not. Though our methods vary in
some significant aspects, namely, (1) we allow for the pos-
sibility that the explicability of the actions/traces could be
affected by explanations provided by the system; (2) we no
longer use labels of high level tasks as a proxy for the expli-
cability of the trace. Instead, we just use a simple binary label
on whether the transition is explicable or not; (3) we no longer
consider sequence models but rather a much simpler labeling
model that maps a single transition to the explicability label.
We argue that in cases where the human is markovian on the
same set of features as the agent, this rather simpler model

suffices.
It is also important that our learning approach is more

tractable than the ones studied in [Zhang et al., 2017], since in
their case to build a balanced dataset (of explicable and inex-
plicable plans), they would need to uniformly sample through
the entire plan space (an extremely hard endeavour with no
obvious known approaches), while we stick to traces gener-
ated from the optimal policy and only need to randomly gen-
erate possible sets of explanatory messages, which is clearly
a smaller set.

Once we have learned an approximation of the above la-
beling function L̂, the problem of explanation generation for
a trace τ = 〈s0, a0, s1, ..., sn, an, sn+1〉 becomes that of find-
ing the subset of Ψ that balances the cost of communication
with the reduction in the inexplicability of the given trace, i.e

arg min
Ψ̂

(CM(Ψ̂) + α ∗ Σni=0(1− L̂(〈si, ai, si+1〉, Ψ̂)))

Where Ψ̂ is a subset of Ψ and α is some scaling factor that
balances the cost of explanation with the number of inexpli-
cable transitions for a given trace.

6 Evaluation
The success of the approach described above would be di-
rectly dependent on whether we can learn high accuracy la-
beling models. Once we have access to such a model, we
could be quite confident in our ability to generate useful ex-
planation (provided the user’s model is the same as the one
the labeler was trained on) and identifying the best explana-
tion becomes a matter of just searching for the required subset
of messages that minimizes the objective defined in section
5. So to evaluate the method our focus was on identifying if
it was possible to learn high accuracy models. We validated
our approach on both simulations and on data collected from
users.

6.1 Evaluation on Simulated Data
For simulations, we used a slightly modified versions of the
Taxi domain [Dietterich, 1998] (of size 6*6), the Four rooms
domain [Sutton et al., 1999] (of size 9*9) and the warehouse
scenario (of size 9*9) described before (implemented using
the SimpleRL framework [Abel, 2019]). For each domain,
we start with an MDP instance (henceforth referred to as the
robot model) and then create a space of possible user models
by identifying a set of possible values for each MDP param-
eter. For example, in the taxi domain the parameters include
position of the passengers, their destination, the step cost, dis-
counting etc., for the Four rooms this included the goal loca-
tions, locations with negative rewards, discounting, step cost,
slip probability, etc., and finally for the warehouse, the posi-
tion of the box, the position of station #1, the step cost, slip-
ping probabilities and the discounting factors were selected
as potential parameters that can be updated. In this setting,
we assume that there exists a single explanatory message for
each possible parameter.

For each individual test, we select a random subset of three
parameters and then randomly choose a value for each of
these. We then treat this new MDP model as a stand-in for

Figure 3: The test accuracy for increasing sizes of training set.

the user model and use it to label traces generated from the
original MDP. The traces were generated by choosing a ran-
dom initial state and then following the optimal policy of the
robot until either the terminal state is reached or the trace
length reaches a predefined limit. For each trace, a random
subset of the explanations was selected and presented to the
human. This means updating the MDP parameters to their
corresponding values in the robot model only for the parame-
ters specified by the current subset of explanation. Each indi-
vidual transition was then labeled using this updated MDP. A
transition was labeled as inexplicable if the action is not the
optimal one in the human model (i.e. Q value is lower) or the
next state had a probability of occurring of δ = 0.

We then used this set of labeled transitions to create a train-
ing set and test set for a decision tree learner. The input fea-
tures to the decision tree consist of current state features, (just
x and y for Four rooms and the position of the the taxi and
passengers for the Taxi domain and for Warehouse it included
the position of the robot and the fact whether the agent picked
up the box or visited station #1), the index of the action and
features capturing the current subset of explanations being
considered. In each Warehouse and Four rooms test instance,
we collected 900 unique data points as training set and 100
data points as the test set. Due to the complexity of the taxi
domain, we generated less data points (since for each differ-
ent explanation subset we need to solve a new planning prob-
lem) and used close to 220 unique points as training data and
on average 28 data points as the test set.

We then tested on 20 such instances for each domain. Fig-
ure 3 plots the average test accuracy for models trained with
training sets of varying sizes. As evident from the graph, a
simple decision tree seems to be able to easily model the ef-
fect of explanations on labeling for these simulated scenarios.
We chose a simple learning model to establish the viability of
this method, but one could easily see that the use of more so-
phisticated learning methods and/or more informed features
should lead to better results.

6.2 User Studies
Next, we wanted to establish if we can still learn such simple
models when the labels are collected from naive users. Our
goal here is not to consider scenarios with possible differ-
ences in the user’s knowledge, but rather cases where, even
in the presence of a set of users with similar backgrounds,
their responses to explanations would be too varied to learn
useful models. To test this, we used the Warehouse domain as
a test bed and collected feedback on how users would view
the explicability of traces generated from this domain when
presented with explanatory messages detailed in Figure 2.

For the study, we recruited 45 master turkers from the
Amazon Mechanical Turk. Each participant was provided
with the URL to a website (https://goo.gl/Hun3ce)
where they could view and label various robot behaviors. We
considered a setting where the robot had a full battery, but
was picking up a fragile box and thus still needs to visit the
station #1. The robot could slip on some cells marked in dark
grey with probability 0.25 (slipping here meant the robot pic-
ture is tilted to give an impression that it slipped on the cell
and didn’t prevent the robot from moving to the next cell).
To make sure that all the users had similar mental models
at the start, they were provided with the following facts, (a)
that robot couldn’t pass through racks, (b) whenever the robot
runs low on battery it needs to get to Station 1, (c) whenever
the robot has a green battery sign next to the robot, that means
their battery is full and (d) the robot needs to take the shortest
route to the goal. Also, they were presented with an exam-
ple trace in this instructions section and were made to take a
small pre-test that allowed them to revise the above facts in
various scenarios. After the pre-test, they were shown eight
traces from the robot policy sampled according to their prob-
abilities. After the first trace, the user was given an explana-
tion message before each trace, where the message was taken
from the seven possible messages (the order of the messages
was always randomized).

From the data collected from 45 turkers, we removed data
from seven users, based on the fact they didn’t find any of the
transition in the first trace (i.e the case where no explanation
was provided) inexplicable. We imagine this number would
go down when we move to expert users or users who are in-
vested in the success of the robot. The data generated for the
remaining 38 users were then used to train a decision tree.
Since the placement of other objects in the environment were
fixed, we were able to use rather simple features for the model
like the current position of the robot (x and y), previous po-
sition (again x and y), the action, whether they have slipped
and finally the explanations given. We found the model to
have an average 10-fold cross validation score of 0.935. For
a randomly generated train and test split (where the test split
was 10% and contained around 7% inexpicable labels) the
precision score was 0.9637 and the recall score was 0.9568.

Furthermore, we could see that the model was able to cor-
rectly predict the usefulness of intuitive minimal explanations
for the given scenario. For example, it predicted that while
the robots decision to visit station #1 would be considered
inexeplicable by the user in the absence of any explanation,
the user would mark it as explicable when they are explained
about the box being fragile and that fragile boxes need to be

inspected at station #1. In fact the model predicted that only
the message that “fragile boxes need to be inspected at station
#1” is enough to convince the user about the need for that ac-
tion (i.e the user could deduce that the box must have been
fragile). This shows that such learned models may help us
generate cheaper explanations (the above set of explanations
is smaller than the corresponding minimal complete behav-
ior explanation for the domain), by taking into account the
users ability to correctly predict missing information in sim-
ple cases. Another point of interest was that the model pre-
dicted all slipping events as explainable even in the absence of
any explanations. The cases where the user saw a slip before
being told about the possibility of slipping was rare (since
there are two explanatory messages related to slipping and the
probability of slipping was 0.25). Furthermore when we went
over the data, we found that in most such cases, the users did
mark it as explainable. This may be because the effect of slip-
ping may not have been that detrimental to the overall plan (it
doesn’t take you off the current path). It would be interesting
to see if this result would be the same in cases where slipping
was a more likely event and if it had a more apparent effect
on the robot’s plan.

7 Related Work

To the best of our knowledge, this work represents the first at-
tempt at learning proxies for user mental models that allows
an agent to predict the potential impact of providing expla-
nations as model reconciliation to observers. With that said,
there have been works that have looked at the problem of gen-
erating explanations in the presence of model uncertainty for
human models. In particular, our previous works like [Sreed-
haran et al., 2018a; 2018b] have looked at cases where the
agent has access to a set of potential human models. One
drawback of considering a set of possible models is either
they would need to have explicit sensing to identify the user
model (which could mean asking a large number of questions
to the user) or providing a large amount of information to
cover the space of all possible models. In our work, the prob-
lem of identifying the specifics of the user model is resolved
through an offline training process.

Another work quite related to the discussion covered in
this paper is [Reddy et al., 2018], wherein the authors tried
to identify cases where they can learn a potential model for
the human’s expectation of the task transition dynamics when
they do not align with the real world dynamics. Unlike their
work, we do not assume that the user can provide traces for
the given task, rather they may be able to provide some high-
level feedback on the action (i.e. they may not be able to do
or even know the right action but may be able to point out ac-
tions or transitions that surprise them). Moreover, their work
requires that the user and the robot must have the same reward
function, which is again an assumption we do not make. Even
if we had followed their technique to learn a potential approx-
imation of the human’s transition model for the task, there is
no guarantee that the learned representation would be one that
makes sense to the human.

8 Discussion and Conclusion
This paper proposes a possible way in which model recon-
ciliation explanation could be applied to cases where the user
model is unknown. The method described here is a rather sim-
ple and general method to identify information that could po-
tentially affect the user’s mental model and produce effects
that align with the agent’s requirements. There is no require-
ment here that the messages have to align with actual facts
about the world. This again points to the rather troubling sim-
ilarities between the mechanisms needed to generate useful
explanations and lies [Chakraborti and Kambhampati, 2018].

Two important assumptions we made throughout the work
is that the user only considers the current state (as defined
by the robot) to make their decisions and we have access to
a model that was learned from interactions to previous users
who had similar knowledge level to the current user. Relaxing
the first assumption would require us to go beyond learning
models that map each transitions to labels. Instead we have
to consider sequential labeling models (for example models
based on LSTM or CRF) of the type considered in [Zhang
et al., 2017] to capture the human’s expectations. For exam-
ple, we considered a simple extension of the warehouse do-
main where the human believes the robot should visit two
locations (i.e the human state contains variables that record
whether the user has visited the locations). Even though here
the user is considering a more detailed model, we were able
to learn labeling models of 80% accuracy by using simple
CRFs. As for the second, instead of assuming that all users
are of the same type, a more reasonable assumption may be
that the users could be clustered into N groups and we could
learn a different labeling model for each user type. Now we
still have a challenge of identifying the user type of a new
user and one way to overcome this would be by adopting
a decision-theoretic approach to this problem and modeling
it as a POMDP (where user labels become observations and
previously learned user models the observation models).

The work discussed in this paper only covers explanations
that allow the user and the system to reconcile any model
difference. This only covers a part of the entire explanatory
dialogue. Even if there is no difference in models, the user
may still have questions about parts of the policy or may raise
alternative policies they think should be followed. This may
arise from a difference in inferential abilities and may require
providing information that is already part of their deductive
closure eg: help them understand the long term consequences
of taking some actions. Once you have access to a set of such
messages one could use a method similar to the one described
in the paper to find the set of helpful ones. Unlike the model
reconciliation setting where the messages stand for informa-
tion about the model, it is not quite clear how one could auto-
matically generate such messages.

Acknowledgments
This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-2840,
the AFOSR grant FA9550-18-1-0067, and the NASA grant
NNX17AD06G.

References
[Abel, 2019] David Abel. simple rl: Reproducible Rein-

forcement Learning in Python. ICLR Workshop on Re-
producibility in Machine Learning, 2019.

[Chakraborti and Kambhampati, 2018] Tathagata
Chakraborti and Subbarao Kambhampati. (when)
can ai bots lie? In AIES, 2018.

[Chakraborti et al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond
explanation as soliloquy. In IJCAI, pages 156–163, 2017.

[Chakraborti et al., 2019] Tathagata Chakraborti, Sarath
Sreedharan, and Subbarao Kambhampati. Balancing
explicability and explanation in human-aware planning.
IJCAI, 2019.

[Daniele Magazzeni, 2018] Pat Langley Susanne Biundo
Daniele Magazzeni, David Smith, editor. Proceedings of
the 1st Workshop on Explainable Planning. ICAPS, 2018.

[David W. Aha and Magazzeni, 2018] Patrick Doherty
David W. Aha, Trevor Darrell and Daniele Magazzeni,
editors. Proceedings of the 2nd Workshop on Explainable
Artificial Intelligence. IJCAI, 2018.

[Dietterich, 1998] Thomas G Dietterich. The maxq method
for hierarchical reinforcement learning. In ICML, vol-
ume 98, pages 118–126. Citeseer, 1998.

[Hayes and Shah, 2017] Bradley Hayes and Julie A Shah.
Improving robot controller transparency through au-
tonomous policy explanation. In 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), pages 303–312. IEEE, 2017.

[Khan et al., 2009] Omar Zia Khan, Pascal Poupart, and
James P Black. Minimal sufficient explanations for fac-
tored markov decision processes. In Nineteenth Interna-
tional Conference on Automated Planning and Scheduling,
2009.

[Kulkarni et al., 2016] Anagha Kulkarni, Tathagata
Chakraborti, Yantian Zha, Satya Gautam Vadlamudi,
Yu Zhang, and Subbarao Kambhampati. Explicable
Robot Planning as Minimizing Distance from Expected
Behavior. CoRR, abs/1611.05497, 2016.

[Lombrozo, 2006] Tania Lombrozo. The structure and func-
tion of explanations. Trends in Cognitive Sciences,
10(10):464 – 470, 2006.

[Miller, 2018] Tim Miller. Explanation in artificial intelli-
gence: Insights from the social sciences. Artificial Intelli-
gence, 2018.

[Reddy et al., 2018] Siddharth Reddy, Anca D Dragan, and
Sergey Levine. Where do you think you’re going?: Infer-
ring beliefs about dynamics from behavior. NIPS, pages
1454–1465, 2018.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 1135–1144. ACM,
2016.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig.
Artificial intelligence: a modern approach. Prentice Hall,
2003.

[Seegebarth et al., 2012] Bastian Seegebarth, Felix Müller,
Bernd Schattenberg, and Susanne Biundo. Making hybrid
plans more clear to human users-a formal approach for
generating sound explanations. In Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling,
2012.

[Sreedharan et al., 2018a] Sarath Sreedharan, Subbarao
Kambhampati, et al. Handling model uncertainty and
multiplicity in explanations via model reconciliation. In
Twenty-Eighth International Conference on Automated
Planning and Scheduling, pages 518–526, 2018.

[Sreedharan et al., 2018b] Sarath Sreedharan, Siddharth Sri-
vastava, and Subbarao Kambhampati. Hierarchical exper-
tise level modeling for user specific contrastive explana-
tions. In IJCAI, pages 4829–4836, 2018.

[Sreedharan et al., 2019] Sarath Sreedharan, Tathagata
Chakraborti, Christian Muise, and Subbarao Kambham-
pati. Planning with Explanatory Actions: A Joint Ap-
proach to Plan Explicability and Explanations in Human-
Aware Planning. arXiv preprint arXiv:1903.07269,
2019.

[Sutton et al., 1999] Richard S Sutton, Doina Precup, and
Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211, 1999.

[Topin and Veloso, 2019] Nicholay Topin and Manuela
Veloso. Generation of policy-level explanations for
reinforcement learning. In AAAI, pages 1074–1080, 2019.

[Zhang et al., 2017] Yu Zhang, Sarath Sreedharan, Anagha
Kulkarni, Tathagata Chakraborti, Hankz Hankui Zhuo,
and Subbarao Kambhampati. Plan Explicability and Pre-
dictability for Robot Task Planning. In ICRA, pages 1313–
1320, 2017.

Explaining the Space of Plans through Plan-Property Dependencies

Rebecca Eifler,1 Michael Cashmore,2 Jörg Hoffmann,1
Daniele Magazzeni,2 Marcel Steinmetz, 1

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany,
2King’s College London, Department of Informatics, London, UK,
{lastname}@cs.uni-saarland.de, {firstname.lastname}@kcl.ac.uk

Abstract

A key problem in explainable AI planning is to elucidate deci-
sion rationales. User questions in this context are often con-
trastive, taking the form “Why do A rather than B?”. An-
swering such a question requires a statement about the space
of possible plans. We propose to do so through plan-property
dependencies, where plan properties are Boolean properties
of plans the user is interested in, and dependencies are en-
tailment relations in plan space. The answer to the above
question then consists of those properties C entailed by B.
We introduce a formal framework for such dependency anal-
ysis. We instantiate and operationalize that framework for
the case of dependencies between goals in oversubscription
planning. More powerful plan properties can be compiled
into that special case. We show experimentally that, in a va-
riety of benchmarks, the suggested analyses can be feasible
and produce compact answers for human inspection.

Introduction
Explainable AI (XAI) is concerned with making AI sys-
tems’ decisions more lucid and thus trustworthy. AI plan-
ning is relevant to XAI as a decision-making methodology,
model-based and thus suited to provide explanations in prin-
ciple. Consequently, research on explainable AI planning
(XAIP) has received increasing interest in recent years (e. g.
(Seegebarth et al. 2012; Smith 2012; Langley et al. 2017;
Fox et al. 2017; Chakraborti et al. 2017; 2019)).

A recent analysis (Miller 2019) of lessons to be learned
for XAI from social sciences highlights that user questions
are often contrastive. A question “Why this?” actually
means “Why this rather than something else that I would ex-
pect?”. To address such queries, explanatory systems should
analyse alternative solutions, and support the user in under-
standing the consequences of the “something else” in ques-
tion. AI planning fits well for this kind of analysis. Two
prior works designed variants thereof (Fox et al. 2017;
Miller 2018). The work by Fox et al. is the starting point
of our work here.

Fox et al. suggest, given a plan π and a user question
“Why does π start with action A rather than B?”, to gen-
erate a new plan π′ starting with B, and answer the question
based on comparing the two plans: undesirable properties
of π′ serve to explain the previous decision. While this idea
is natural, a key weakness is that there may be differences

between π and π′ unrelated to the use of A vs. B. Many
comparison aspects (e. g. which other actions are used, or
which “soft” objectives are satisfied) may be affected by ar-
bitrary decisions in the planner’s search.

Here we address the same kind of explanation problem,
but we replace the existential answer generating a single al-
ternative plan π′ with a universal answer determining shared
properties of all possible such alternatives. In this way, the
analysis we propose aims at explaining the space of possible
plans, rather than pointing out examples.

Our proposed analysis works at the level of plan prop-
erties: Boolean functions on plans that capture aspects of
plans the user cares about (whether or not the plan starts with
a particular action, whether or not a particular soft objective
is satisfied, etc). We assume that the set P of plan proper-
ties of interest is given as part of the input.1 Our analysis
then determines the dependencies across plan properties,
i. e., plan-space entailments which we define as follows.
The “plan space” is the set Π of candidate plans to be con-
sidered (canonically, the set of plans for an input planning
task). A plan property p entails another property p′ in Π if
every π ∈ Π that satisfies p also satisfies p′. A user question
“Why does the current plan π satisfy p rather than q?” can
then be answered in terms of the properties q′ not true in π
but entailed by q: things that will necessarily change when
satisfying q.

Our approach also supports iterative planning, along the
lines suggested by Smith (2012). Given a current plan π ∈ Π
and a user question “Why achieve p rather than q?”, if the
consequences of q are tolerable to the user, she may choose
to enforce q, gradually narrowing the plan-candidate space
Π.

We remark that our approach can be viewed as an inter-
mediate between domain/task analysis (e. g. (Fox and Long
1998)), which our approach generalizes; and model check-
ing applied to planning models, which our approach is an
instance of (related to (Vaquero et al. 2013)).

Our contributions are as follows. We conceptualize
the explainability problems we address, through a generic
framework making minimal assumptions on the planning
context (Section). We instantiate the framework with goal-

1An interesting yet challenging question for future work is how
one can automatically identify relevant plan properties.

fact conjunction dependencies in oversubscription planning
(e. g. (Smith 2004; Domshlak and Mirkis 2015)), and devise
analysis algorithms for that purpose (Section). We show
that more general plan properties – in particular, action-
set properties – can be compiled into goal facts and thus
into that analysis (Section). We give an illustrative ex-
ample (Section), and we evaluate our techniques on inter-
national planning competition (IPC) benchmarks modified
for oversubscription planning, and on IPC benchmarks ex-
tended with action-set properties (Section). We find that, in
a variety of benchmark studies, the suggested analyses can
be feasible and produce compact answers for human inspec-
tion.

Generic Framework
We assume some formalism defining planning tasks τ . We
do not need any assumptions about that formalism, except
that it defines a concept of plans π, where that concept
can again be arbitrary (action sequence/schedule/partial or-
der/etc). Our definitions are relative to a set Π of plans of
interest. The canonical setup we have in mind is that where
Π is induced by τ , e. g. as the set of action sequences appli-
cable in the initial state, or as the set of plans that achieve a
goal. It could also be useful in some cases though to focus
the analysis on a small set of candidate plans listed as part
of the input.

Plan Properties and Property Entailment
Plan properties, in their most general form, are simply func-
tions mapping a task and plan to a Boolean value indicating
whether or not the property is satisfied:

Definition 1 (Plan Property). Denoting by T the set of all
tasks and by P the set of all plans, a plan property is a par-
tial function p : T ×P 7→ {true, false}. Given a task τ and
a set of plans Π, we say that p is a plan property defined on
τ and Π if its domain includes {(τ, π) | π ∈ Π}.

Example plan properties are goal facts/goal formulas
(true at end of plan?), temporal plan trajectory constraints,
constraints on subsets of actions used/not used, deadlines,
bounds on resource consumption, etc. We expect that, typi-
cally, p will be computable in time polynomial in the size of
its input (though that is not a requirement of our framework).

We assume a set P of plan properties as part of our input.
P may be exponentially large in the size of its specification
though. An example we will explore later is that where the
user is interested in dependencies between subsets of a setG
of soft-goal facts. The set P of interest then are the conjunc-
tions φ over G (functions checking whether φ is true at the
end of a plan), but the input to our analysis specifies only G.

The kind of dependency our framework focuses on is en-
tailment over plan properties, in the space of truth-value as-
signments induced by the plan-candidate set Π:

Definition 2 (Π-Entailment). Let τ be a task, Π a set of
plans, and P a set of plan properties defined on τ and Π.

Let π ∈ Π. We identify π with the truth-value assignment
π : P 7→ {true, false} where π(p) := p(τ, π). We identify
Π with the set of such truth-value assignments. We say that

π satisfies p, written π |= p, if π(p) = true . We denote by
MΠ(p) := {π | π ∈ Π, π |= p} the models of p.

We say that p Π-entails q, written Π |= p ⇒ q, if
MΠ(p) ⊆ MΠ(q). We say that p and q are Π-equivalent,
written Π |= p ⇔ q, if MΠ(p) = MΠ(q). We denote
[p]Π := {q | q ∈ P,Π |= p⇔ q}.

This definition essentially just views plans π ∈ Π as truth-
value assignments in the obvious manner. Entailment and
equivalence over plan properties are then defined straightfor-
wardly, with Π in the role traditionally taken by a knowledge
base that restricts the truth-value assignments under consid-
eration. Observe that formulas over plan properties can be
encoded as individual plan properties, so that defining Π-
entailment over individual plan properties is enough to per-
mit logical combinations thereof.

Importantly, the role of Π as a knowledge base means that
Π-entailment is more than standard entailment: the latter im-
plies the former, but not vice versa. As a simple example,
say the plan properties P are propositional formulas φ over
facts, evaluated at the end of the plan. Then φ ⇒ ψ implies
that Π |= φ ⇒ ψ, simply because any (plan-end) state that
satisfies φ must satisfy ψ. But not vice versa: e. g. if facts
p, q are mutex in the task then Π |= p ⇒ ¬q. As a more
motivating example, say the plan properties are soft goals
(like having scientific observations in satellite planning) as
well as resource preferences (like consuming at most a given
amount of energy). Then entailments of interest can take the
form Π |= p⇒ ¬(q1 ∧ q2 ∧ q3) saying that we cannot have
p without foregoing either of q1 or q2 or q3. Note that this is
an entailment specific to Π, which may not hold in general
(e. g. if cheaper actions are available, or if cheaper plans are
admitted by removing some other hard goals). The identifi-
cation of such specific entailments – specific to the space Π
of plans considered – is central to our framework.

Plan-Space Explanations
Our plan-space explanations are based on the Π-entailment
relation on P given the knowledge base Π:

Definition 3 (PDO, cPDO). Let τ be a task, Π a set of plans,
and P a set of plan properties defined on τ and Π.

The plan-property dependency order (PDO) for Π and P
is the partial order ⇒Π over the equivalence classes [p]Π,
where [p]Π ⇒Π [q]Π iff Π |= p⇒ q.

A concrete PDO (cPDO) replaces each equivalence class
[p]Π with exactly one p ∈ [p]Π.

The PDO makes explicit how the plan properties P de-
pend on each other. For all contrastive user questions of the
form “Why r rather than p?”, the answer can be directly ex-
tracted from the PDO, in terms of the properties entailed by
p. For example, the answer may be “we cannot have p with-
out foregoing either of q1 or q2 or q3”.

However, the PDO and the answers it provides can be
large. A concrete PDO can be a practical proxy if equiva-
lence classes are large. Beyond that, it is clearly important
to identify (i) more compact and/or (ii) more restricted plan-
space explanations. We introduce variants of both here.

Regarding (i), in our concrete instantiation of this frame-
work we use subsumption over Π-entailment relations, re-
lying on an easy-to-test sufficient criterion for Π-entailment:

Definition 4 (Dominant cPDO). Let τ be a task, Π a set of
plans, and P a set of plan properties defined on τ and Π.

Let⇒suff⊆ P × P be such that, if p ⇒suff q, then Π |=
p⇒ q. In a cPDO, we say that p⇒Π q subsumes p′ ⇒Π q′

given⇒suff if p′ ⇒suff p and q ⇒suff q′.
A dominant cPDO (dcPDO) for Π and P given⇒suff is

the subset of non-subsumed p⇒Π q in a cPDO.

An entailment p ⇒Π q subsumes another one p′ ⇒Π q′

if its left-hand side is weaker (p′ ⇒suff p) and its right-
hand side is stronger (q ⇒suff q′): in this case, p′ ⇒Π q′

follows from p ⇒Π q. A dominant cPDO thus selects only
the strongest Π-entailments in a cPDO, as a more compact
representation of the information present in that cPDO.

The role of⇒suff here is to qualify the amount of infor-
mation we are allowed to use in identifying this compact
representation. This is important because, if we show com-
pacted information to a user, then the user should be able to
de-compact this information – to obtain whichever informa-
tion the user is actually interested in – effortlessly. A simple
restriction is for⇒suff to be computable in polynomial time,
but cognitive abilities may necessitate stronger restrictions.
Here we will consider goal-fact conjunctions and disjunc-
tions, and use the trivial ⇒suff where larger conjunctions
are stronger while larger disjunctions are weaker.

As a simple form of (ii) more restricted plan-space expla-
nations, we will employ the restriction of focus to a prede-
fined subset D of dependencies of interest:

Definition 5 (Restricted (dc)PDO). Let τ be a task, Π a set
of plans, and P a set of plan properties defined on τ and Π.

LetD ⊆ P×P be any binary relation on plan properties.
Then a (dc)PDO for D results from ignoring Π-entailments
Π |= p⇒ q where (p, q) 6∈ D.

Some words are in order regarding complexity. Testing Π-
entailment encompasses the plan existence problem even for
extremely simple plan properties (asking whether the plan
achieves a fact p). This is exacerbated by the size of the
PDO. Certainly, a (dc)PDO should ideally be computed of-
fline, prior to interaction with a user.

Goal Dependencies
We now instantiate our framework with a concrete use case:
dependencies between goals in oversubscription planning,
where the question addressed is which combinations of
(soft) goals exclude which other combinations. In Section ,
we will show how to compile a more powerful plan property
language into this special case.

Planning Framework
Most of the techniques we introduce in what follows are ap-
plicable to a broad range of planning frameworks. Neverthe-
less, for a concrete exposition, henceforth we consider the
finite-domain representation (FDR) framework (Bäckström
and Nebel 1995; Helmert 2009), with finite-domain state

variables as used in the Fast Downward system (Helmert
2006) on which our implementation is based.

An FDR task τ is a tuple τ = (V,A, c, I,G) where V is
the set of variables, A is the set of actions, c : A 7→ R+

0 is
the action cost function, I is the initial state, and G is the
goal. A state, in particular I , is a complete assignment to V ;
G is a partial assignment to V ; each action a ∈ A has a pre-
condition prea and an effect eff a, both partial assignments
to V . We will refer to variable-value pairs v = d as facts,
and we will identify partial variable assignments with sets of
facts. An action a is applicable in a state s if prea ⊆ s. The
outcome state s[[a]] is like s except that s[[a]](v) = eff a(v)
for those v on which eff a is defined. The outcome state of
an iteratively applicable action sequence π is denoted s[[π]].

We address an oversubscription variant of FDR, where an
oversubscription planning (OSP) task is a tuple τ = (V,
A, c, I,G, b) exactly like an FDR task but with an additional
cost bound b ∈ R+

0 . Intuitively, the goals G are “soft”, and
the challenge is to achieve a maximally valuable subset of
G within the cost bound. OSP frameworks in the literature
employ notions (e. g. goal-fact rewards) of what it means to
be “maximally valuable”. Here we assume instead that the
user’s preferences over the soft goals are difficult to spec-
ify and/or elicitate, so that an in-depth characterization of
the trade-offs between different goal sets – their dependen-
cies – is of interest. In the terms of our framework, this
means that the set Π of plans is simply the set of all ac-
tion sequences π = 〈a1, . . . , an〉 applicable in I and where∑n
i=1 c(ai) ≤ b. An analysis over suitable sets of proper-

ties P and dependencies D then yields the desired trade-off
information.

Plan Properties
The plan properties we consider here are characterized by
propositional formulas over goals:

Definition 6 (Goal Properties). Let τ = (V,A, c, I,G, b) be
an OSP task, and Π its set of plans.

A goal property for τ is a function pφ : Π 7→
{true, false} where φ is a propositional formula over the
atomsG, and pφ(π) = true iff φ evaluates to true under the
truth value assignment where g ∈ G is true iff g ∈ I[[π]].

We identify goal properties pφ with the characterizing for-
mulas φ. We consider a class of properties and dependencies
identifying exclusions between goal conjunctions:

Definition 7 (Goal Exclusion). Let τ = (V,A, c, I,G, b) be
an OSP task, and Π its set of plans.

The PDO for goal exclusion (PDO-GE) is the PDO for
Π, the property set PGE := {

∧
a∈A g | A ⊆ G}∪{¬

∧
g∈B b

| B ⊆ G}, and the dependency set DGE := {(
∧
a∈A a,

¬
∧
b∈B b) | A ∩B = ∅}.

We restrict focus to goal conjunctions and negations
thereof, and we are interested only in implications of the
form Π |=

∧
a∈A a ⇒ ¬

∧
b∈B b stating that, if we achieve

all of A, we have to forego at least one of B. The PDO-GE
then explains to the user how exactly different goal subsets
exclude each other, identifying the fine-grained trade-off.

Given the restriction to DGE, the equivalence classes in
the PDO-GE are singletons. Hence there is a unique cPDO-
GE, that we identify with the PDO-GE itself.

For compacting the information presented to a user,
we use the sufficient criterion for entailment where∧
a∈A′ g ⇒suff

∧
a∈A a iff A′ ⊇ A and ¬

∧
b∈B b ⇒suff

¬
∧
b∈B′ g iff B ⊆ B′. The dominant PDO-GE thus selects

the entailments with minimal left-hand side conjunctions ex-
cluding minimal right-hand side conjunctions.

Computing the Dominant PDO-GE
The dominant PDO-GE can be read off the minimal unsolv-
able goal subsets (MUGS), where G′ ⊆ G is a MUGS if
G′ cannot be achieved but every G′′ (G′ can:
Proposition 1 (PDO-GE from MUGS). Let τ = (V,A, c, I,
G, b) be an OSP task, and Π its set of plans.

Then Π |=
∧
a∈A a⇒ ¬

∧
b∈B b is in the dominant PDO-

GE if and only if A ∪B is a MUGS.
Proof. A Π-entailment Π |=

∧
a∈A a ⇒ ¬

∧
b∈B b clearly

holds iff A ∪ B is unsolvable. Dominant entailments in the
PDO-GE result from set-inclusion minimal A and B, corre-
sponding to the set-inclusion minimality of MUGS.

Our computational problem thus boils down to computing
all MUGS. This can be done through a search over goal sets,
that we refer to as systematic weakening (SysW):
(1) the start node of the search is G;
(2) each search step selects an open nodeG′, calls a planner

to test whetherG′ is solvable in τ , caches the result, and
expands G′ if it is unsolvable;

(3) the children of a node G′ are those G′′ ⊂ G′ where
|G′′| = |G′| − 1.

Upon termination, the MUGS are those nodes G′ all of
whose children are solvable.

Dually, systematic strenghtening (SysS) starts from ∅,
with search steps expanding solvable nodes, and children
adding one more goal fact. Upon termination, the MUGS
can be easily obtained from the unsolvable search nodes.

In both SysW and SysS, every goal set can be reached
from the start node by permutations of the same goal-fact
removal/addition steps. We avoid duplicate planner calls by
caching. We give goal sets unique integer IDs, for fast cache
lookup, and to fix the expansion order so that we always
know whether or not we have generated a node before.

As a non-trivial search enhancement, we created synergy
with recent nogood learning techniques, conjunction learn-
ing (Steinmetz and Hoffmann 2017b) and trap learning
(Steinmetz and Hoffmann 2017a). These techniques refine
dead-end detection methods (nogoods) based on the unsolv-
able states encountered in state space search on a planning
task. As the children tasks in our searches are closely re-
lated to their parents, the refined nogoods are likely to be
useful still. So we transfer the nogoods along search paths,
resulting in iteratively stronger and stronger nogoods. For
both conjunction learning and trap learning, the nogoods
learned depend on the goal, so that only some of the nogoods
remain valid for transfer in SysW where children remove
goals. We designed simple methods to identify this nogood

subset, keeping track of goal dependencies in conjunction
learning, and re-asserting trap validity in trap learning.

Yu et al. (2017) perform an analysis related to MUGS,
to suggest goals to drop in oversubscribed situations. They
address conditional temporal problems (a form of condi-
tional temporal plans), and leverage previous conflict anal-
ysis methods in that area. It remains a question for future
work whether such conflict analysis could inspire different
analysis methods in our planning framework.

Compilations into Goal Dependencies
The analysis of goal properties just described can be used
to analyze more complex properties that can be compiled
into goal facts. Given the well-known power of compila-
tion in planning languages (e. g. (Gazen and Knoblock 1997;
Nebel 2000; Edelkamp 2006; Palacios and Geffner 2009;
Baier et al. 2009)), there is large potential in this idea. As
an example, here we consider what we refer to as action-set
properties:

Definition 8 (Action-Set Properties). Let τ = (V,A, c, I,G,
b) be an OSP task, Π its set of plans, and A1, . . . , An ⊆ A.

An action-set property for τ andA1, . . . , An is a function
pφ : Π 7→ {true, false} where φ is a propositional formula
over the atoms A1, . . . , An, and pφ(π) = true iff φ evalu-
ates to true under the truth value assignment where Ai is
true iff π contains at least one action from Ai.

As before, we identify action-set properties pφ with the
characterizing formulas φ. Arguably, action-set properties
are practically relevant. They allow to express things like
“objective x is covered by satellite y”, “route x is not used”,
“passengers x and y ride in the same vehicle”, etc. At the
same time, the simple syntax of action-set properties lends
itself to effective compilation, as follows.

Given τ , Π, and A1, . . . , An as in Definition 8, to obtain
a compiled task τ ′

1) introduce Boolean flags isUsed i that are initially false
and set to true by any action from Ai;

2) introduce formula-evaluation state variables and actions
evaluating each pφ based on these (following (Gazen
and Knoblock 1997; Nebel 2000)), setting Boolean flags
isTrueφ storing the outcome values;

3) introduce a separate 1) planning phase vs. 2) formula-
evaluation phase, and a switch action allowing to go from
1) to 2).

Then the planning-phase prefixes in τ ′ are in one-to-one cor-
respondence with Π, and given such a prefix π the evaluation
phase in τ ′ can achieve isTrueφ iff pφ(π) = true .

Now say that we want to analyze the dependencies across
a given set P of action-set properties (e. g. possible unde-
sirable consequences of not using route X). We are given
τ , Π, and P ; we want to compute the PDO for prop-
erty exclusion over P , i. e., the dependencies of the form
Π |=

∧
φ∈A φ ⇒ ¬

∧
ψ∈B ψ. With the above, this can be

done by instead computing the PDO-GE for τ ′ with goal set
{isTrueφ | φ ∈ P}, and identifying each isTrueφ with φ in
the outcome.

Clearly, similar compilation techniques can be used for
much more powerful property languages. In a preliminary
exploration, we implemented a compilation for LTL prop-
erties based on previous work (Edelkamp 2006; Baier et al.
2009). Our results indicate that this renders the PDO analy-
sis infeasible computationally. It remains an open question
how LTL properties can be addressed more effectively.

An Illustrative Example
To illustrate our approach and the kind of explanations it
provides, consider the IPC NoMystery domain, a classi-
cal transportation domain with fuel consumption. We con-
sider the example task with two trucks and three packages
as illustrated below. Fuel costs are indicated at road seg-
ments (initial fuel is 16 for T0 and 7 for T1). The pack-
ages are initially at L0 (shown in blue); their goal locations
are L4, L3,and L5 (shown in red). We define three kinds

L0

P0, P1, P2

L1 T1

L2

L3

P1

L4

P0

L5

T0 P2

5
2

34 1
2

5

5

4

of action-set properties
for this domain: uses Ti
(Lx, Ly) (truck Ti drives at
least once from Lx to Ly
or vice versa); doesn’t use
Ti (Lx, Ly) (the opposite);
same truck Px Py (both
packages are delivered by
the same truck). In our ex-
ample task, we consider six instances of these properties: 1.
uses T0 (L2, L3); 2. same truck P1 P2; 3. uses T0 (L4, L3);
4. same truck P2 P0; 5. doesn’t use T0 (L0, L5); 6. uses T1

(L5, L4).
We fix the package destinations as hard goals, defining

the set of plans Π considered. Computing the MUGS over
the six action-set properties using the algorithms previously
described, it turns out there are seven minimal unsolvable
subsets of these properties, each of size three.

Say now that the current plan uses T0 only, and includes
the action (drive T0 L5 L0). The user might ask ”Why don’t
you avoid the road L0 − L5, which has a lot of traffic at the
moment?”. Answering this question in terms of contrastive
explanation, as previously discussed, corresponds to forcing
property 5 to be satisfied. At the same time, the plan already
satisfies properties 2 and 4. However, one of the MUGS is
{2, 4, 5}, and hence the answer to the user question would
be: Because if you don’t use that road, then you would not
be able to deliver all packages using a single truck.

Experiments
We implemented our approach in Fast Downward (FD)
(Helmert 2006). We evaluate it, in turn, on IPC benchmarks
modified for oversubscription planning, and on a selection
of IPC benchmarks extended with action-set properties.

In all experiments, the base planner called by our SysS
and SysW algorithms on each search node employs hFF

(Hoffmann and Nebel 2001) for search guidance. The ex-
periments were run on a cluster of Intel E5-2660 machines
running at 2.20 GHz, with time (memory) cut-offs of 30
minutes (4 GB).

Oversubscription Planning
To evaluate our analysis of goal dependencies as per Sec-
tion , we modified all optimal-planning STRIPS IPC do-
mains up to IPC’18. Following Domshlak and Mirkis
(2015), for each benchmark task we ran an optimal plan-
ner (A∗with hLM-cut (Helmert and Domshlak 2009)) to de-
termine the optimal plan cost C, then obtained OSP tasks
by setting the cost bound to b = x ∗ C where x ∈
{0.25, 0.5, 0.75}. Our benchmark set consists of 46 do-
mains, and contains those tasks solved by the optimal plan-
ner, and where the number of goal facts is < 32. We
extended conjunction learning (Steinmetz and Hoffmann
2017b) to deal with cost bounds, thus enabling nogood
learning and transfer in SysS and SysW.

Figure 1 shows our data. Consider first the coverage data
(leftmost two parts). To have some sort of measure of how
computationally difficult our proposed analysis is, we use
reference points from classical planning. First, the hLM-cut

column gives coverage for A∗ with hLM-cut run on the orig-
inal IPC instance without a cost bound. This provides a
comparison to solvable optimal planning. Second, the hC
columns give coverage for search, with nogood learning, on
the respective cost-bounded instances, when all goals must
be achieved and thus the task is unsolvable. This provides
a comparison to proving unsolvability, in the same situation
where our approach computes all MUGS. It is expected that
our algorithms, solving a more complex problem, will per-
form worse than the reference points.2 The question is, how
much worse?

As a short summary of the answer provided by Figure 1 to
that question, compared to the hLM-cut reference point, taking
the per-domain best of our four algorithm configurations, for
x = 0.25 we get equal coverage in 36 of the 46 domains, and
in that sense are “not much worse” than optimal planning.
For larger cost bounds, the solvable goal subsets become
larger, and accordingly our analysis becomes harder. For
x = 0.5 we get equal coverage in 23 domains, for x = 0.75
in 13. The comparison to the hC proving-unsolvability ref-
erence points is qualitatively similar, with equal coverage in
38, 25, and 20 domains for x = 0.25, 0.5, 0.75 respectively.
Overall, it seems fair to say that our analyses can be feasible
in many cases, in the sense of not being more infeasible than
the most closely related classical planning problems.

While comparing our algorithm configurations against
each other is not our focus here, observe in the rightmost
part of Figure 1 that both SysS and SysW suffer from larger
cost bounds, but that is less so for SysW. This is because, for
small cost bounds, solvable goal sets are small and thus SysS
terminates earlier; while for large cost bounds, solvable goal
sets are large and thus SysW terminates earlier. Conjunction
learning (hC in the table) is moderately beneficial.

Consider finally the #MUGS part of Figure 1. Observe
that, if the user asks a question “Why r rather than p?”,
the answer are the properties entailed by p, represented here

2Indeed, the first reference point is an upper bound to our cov-
erage, as only solved instances are included in our benchmark set;
and the second reference point is an upper bound for SysW as it
constitutes the first search node in that algorithm.

Reference Points Coverage, x = #MUGS, x = Search Tree Fraction, x =

hLM-cut hC 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
x = SysS SysW SysS SysW SysS SysW Sys Sys Sys

domain - 0.25 0.5 0.75 hC hC hC hC hC hC avg max S W S W S W
agricola (20) 0 -
airport (50) 28 28 24 17 25 26 24 27 19 21 19 21 19 16 19 16 2.7 2.0 1.2 11 5 4 0.67 0.76 0.88 0.71 1.00 0.61
barman (34) 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 3.0 3.0 1.0 3 3 1 0.50 0.88 0.88 0.88 - -
blocks (35) 28 28 28 28 28 28 27 28 23 27 21 27 18 24 17 26 7.6 10.8 14.1 39 30 57 0.19 0.97 0.39 0.93 0.78 0.72
childsnack (20) 0 -
data-network (20) 12 12 12 12 12 12 12 12 12 12 12 12 11 12 11 12 1.7 1.5 1.2 3 3 2 0.83 0.65 0.88 0.65 0.92 0.61
depot (22) 7 7 7 6 7 7 7 7 7 7 7 7 4 3 4 3 4.0 7.0 4.5 6 12 10 0.34 0.94 0.52 0.91 0.89 0.68
driverlog (18) 13 13 13 11 13 13 13 13 10 11 10 12 8 10 7 10 7.0 18.2 8.7 22 45 17 0.19 0.98 0.58 0.86 0.85 0.50
elevators (50) 40 40 40 35 40 40 40 40 40 37 38 37 35 26 31 26 3.9 4.9 3.2 8 13 8 0.37 0.94 0.67 0.89 0.92 0.71
floortile (36) 13 13 13 6 7 7 6 8 2 2 2 2 2 1 2 2 175.6 66.0 31.5 697 71 33 0.12 0.99 0.67 0.80 0.97 0.28
freecell (80) 15 15 15 13 15 15 15 15 15 15 15 15 14 13 13 13 4.0 4.7 3.4 4 6 5 0.31 0.94 0.60 0.94 0.88 0.76
ged (20) 15 15 15 11 15 15 15 15 15 10 10 10 10 7 10 7 9.2 38.7 12.5 18 101 38 0.23 0.90 0.47 0.80 0.58 0.70
grid (5) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.5 1.5 1.0 2 2 1 0.81 0.69 0.81 0.69 1.00 0.56
gripper (14) 7 7 7 5 7 5 5 5 4 4 4 4 4 3 4 3 458.3 87.0 39.5 1820 252 120 0.21 0.98 0.65 0.88 0.96 0.46
hiking (20) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1.4 1.4 1.0 2 2 1 0.89 0.61 0.89 0.61 1.00 0.61
logistics (60) 26 26 26 20 24 26 21 26 15 19 14 20 12 13 12 15 6.3 6.0 2.9 25 22 7 0.31 0.95 0.68 0.84 0.90 0.63
miconic (150) 141 120 76 50 66 66 55 64 45 40 44 43 41 36 40 36 76.0 24.1 8.4 363 98 36 0.33 0.91 0.73 0.82 0.95 0.61
movie (30) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 7.0 35.0 21.0 7 35 21 0.06 0.99 0.50 0.94 0.94 0.50
mprime (35) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 1.3 1.2 1.2 2 2 2 0.90 0.59 0.92 0.59 0.93 0.59
mystery (30) 17 17 17 17 17 17 17 17 17 17 17 17 15 17 15 17 1.4 1.4 1.2 2 2 2 0.88 0.63 0.88 0.63 0.92 0.63
nomystery (20) 14 14 14 13 14 14 14 14 10 12 10 12 8 8 8 8 7.3 18.5 5.8 18 47 13 0.20 0.96 0.63 0.92 0.87 0.61
openstacks (77) 47 45 45 43 45 45 37 43 45 43 29 41 42 42 22 33 15.3 14.2 12.3 25 25 23 0.06 0.99 0.05 0.99 0.18 0.97
org-syn (20) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5.1 5.1 5.1 12 12 12 0.23 0.94 0.23 0.94 0.23 0.94
org-syn-s (13) 10 10 10 9 8 8 7 8 8 8 7 8 7 6 6 6 5.2 7.2 8.3 12 28 36 0.20 0.95 0.23 0.95 0.32 0.89
parcprinter (26) 24 20 20 20 10 10 10 14 10 10 10 14 10 10 10 12 3.8 8.2 5.0 14 24 10 0.44 0.98 0.61 0.95 0.72 0.85
parking (40) 5 5 5 1 5 5 4 5 0 1 0 1 0 0 0 0 36.8 31.0 - 79 31 - 0.02 0.99 - - - -
pathways (23) 5 5 5 5 5 5 5 5 4 5 4 5 4 4 4 4 3.2 3.8 1.8 6 10 3 0.53 0.81 0.77 0.77 0.91 0.70
pegsol (2) 2 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 7.0 23.5 64.0 8 41 122 - - - - - -
pipesworld-nt (50) 17 17 17 17 17 17 17 17 17 17 16 17 16 14 16 14 3.7 6.4 3.8 8 31 17 0.44 0.89 0.73 0.84 0.88 0.66
pipesworld-t (50) 12 12 12 11 12 12 12 12 11 11 11 11 9 11 9 10 3.6 5.0 3.7 7 15 12 0.43 0.94 0.67 0.87 0.90 0.63
psr-small (50) 49 49 49 49 48 48 49 49 47 47 48 49 46 46 48 48 3.7 2.7 2.0 20 13 9 0.76 0.63 0.94 0.55 0.97 0.47
rovers (31) 8 8 8 7 8 8 8 8 7 7 7 7 6 5 6 4 18.0 11.4 3.8 95 35 12 0.36 0.93 0.74 0.84 0.91 0.59
satellite (19) 7 7 7 6 7 7 7 7 6 6 6 7 4 5 4 6 5.6 26.9 14.7 7 76 36 0.19 0.97 0.49 0.94 0.88 0.73
scanalyzer (40) 23 21 21 13 9 15 9 13 9 9 9 9 9 5 9 9 20.9 36.7 31.2 46 103 43 0.25 0.99 0.53 0.86 0.75 0.83
snake (17) 7 7 7 4 6 6 6 6 3 3 3 3 3 1 2 1 10.5 21.0 44.3 16 27 77 0.13 0.92 0.32 0.86 0.58 0.73
sokoban (50) 50 50 49 41 50 50 49 50 46 43 45 43 40 30 40 28 6.6 4.1 1.8 56 36 10 0.60 0.85 0.86 0.71 0.95 0.51
storage (30) 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 14 3.6 3.7 2.1 10 10 5 0.62 0.81 0.85 0.75 0.98 0.57
termes (20) 6 6 4 1 6 6 5 6 5 1 1 2 1 0 0 0 3.2 2.6 3.0 8 6 3 0.37 0.72 0.53 0.53 - -
tetris (17) 6 6 6 5 6 6 5 6 4 3 3 3 3 2 3 2 29.7 32.8 7.3 81 82 11 0.26 0.98 0.81 0.77 0.97 0.41
tidybot (40) 23 23 23 19 23 23 23 23 23 22 23 22 13 13 7 14 3.1 3.3 3.4 4 6 6 0.38 0.92 0.41 0.92 0.75 0.84
tpp (30) 7 7 7 6 7 7 7 7 6 7 6 6 6 5 6 5 4.1 8.9 4.2 9 25 11 0.43 0.86 0.67 0.83 0.96 0.66
transport (70) 23 23 23 22 23 23 23 23 23 23 23 23 23 22 22 22 3.5 3.7 2.1 5 10 6 0.43 0.91 0.59 0.88 0.73 0.69
trucks (30) 10 10 10 8 10 10 9 10 6 7 6 7 5 3 5 4 15.7 17.1 5.0 36 31 8 0.23 0.97 0.70 0.89 0.93 0.65
visitall (14) 14 13 13 13 13 13 10 10 9 10 8 10 6 6 7 8 97.4 111.6 46.5 307 380 150 0.20 0.93 0.41 0.90 0.79 0.75
woodworking (35) 29 25 25 25 23 23 12 15 9 9 5 9 5 5 5 5 267.3 95.0 16.8 1030 192 26 0.02 0.99 0.27 0.93 0.72 0.52
zenotravel (20) 13 13 12 9 13 13 12 13 9 9 8 9 8 9 8 9 10.4 4.0 2.6 36 6 4 0.36 0.94 0.67 0.89 0.87 0.66
Sum (1583) 862 828 776 670 733 740 688 732 630 624 592 636 556 517 523 528

Figure 1: Results on IPC benchmarks modified for oversubscription planning. Reference Points: related classical planning
tasks (see text). Coverage: of our MUGS algorithms SysS and SysW, with vs. without conjunction learning hC . #MUGS:
average/maximum number of MUGS, indicating explanation size (see text). Search Tree Fraction: fraction of worst-case
search tree explored. Best performance in each part shown in boldface. Cost bounds set to x times optimal cost.

through the smallest conjunctions excluded by p. The num-
ber of such conjunctions is at most the number of MUGS. So
#MUGS corresponds to worst-case answer/explanation size.
As the data shows, that size is often small, of a scale that
seems feasible for human inspection.

Action-Set Properties
To evaluate the use of our framework with more complex
plan properties, beyond goal facts, we experimented with the
compilation of action-set properties as per Section . We se-
lected four IPC domains for extension with action-set prop-
erties, namely NoMystery, Rovers, and TPP as considered in
resource-constrained planning (Nakhost et al. 2012), where
minimum resource requirements are known as per available
problem generators; plus the Blocksworld as an intuitively
rather differently structured domain. In all four domains, we
use discrete resource consumption encoded into the STRIPS
model, enabling the use of trap learning (Steinmetz and
Hoffmann 2017a) which turns out to be highly beneficial
here.

In Blocksworld, we include two gripper hands and the
action-set properties ask whether a given gripper is used to
pick up a given block, or to stack a given pair of blocks. In
NoMystery, the properties are as in our illustrative example
(Section). In Rovers, the properties ask whether a given
rover or camera is used for a given observation. In TPP,

they ask whether given road segments are used, and whether
given goods are bought at given markets. In all cases, we
vary the number of action-set properties between 1 and 10.
We fix the original goal facts as hard goals, and we set the
available resources to x ∈ {1.0, 1.5, 2.0} times the mini-
mum needed to allow for costlier plans satisfying some of
the properties.

We created benchmark tasks with size parameters around
the borderline of computational feasibility for our analyses,
given our time/memory limits. In Blocksworld, we used 5
– 8 blocks; in NoMystery, our tasks have 2 trucks, 6 loca-
tions, and 4 – 7 packages; in Rovers, they have 2 rovers, 5
waypoints, and 4 – 7 science objectives; in TPP, we use 5
markets, 1 depot, and 4 – 7 goods. In all domains, we vary
the number of goal facts (and associated objects) between 4
and 7. We create 10 base instances for each size-parameter
setting, which are then modified for our experiments with
different initial resource levels, and action-set properties to
be considered.

To have some comparison measure for performance,
again we use classical-planning reference points, based on
A∗ with hLM-cut, and on search with trap learning, respec-
tively. We now run these reference points on tasks where all
(original goal facts plus) action-set properties are hard goals.
These tasks may be solvable (in which case A∗ with hLM-cut

tends to be better) or unsolvable (in which case trap learning

x = 1.0 x = 1.5 x = 2.0

0

5

10

B
lo

ck
sw

or
ld

#g
oa

ls
6

0

5

10

0

5

10

0

5

10

N
om

ys
te

ry
#g

oa
ls

6

0

5

10

0

5

10

0

5

10

R
ov

er
s

#g
oa

ls
7

0

5

10

0

5

10

1 10

0

5

10

#properties

T
PP

#g
oa

ls
7

1 10

0

5

10

#properties 1 10

0

5

10

#properties

SysS SysW SysS trap SysW trap hLM-cut trap

Figure 2: Coverage results on IPC benchmarks extended with action-set properties.

tends to be better). The configurations of our own algorithm
are SysS and SysW as before, now with vs. without trap
learning (and transfer).

Figure 2 shows the coverage data. For space reasons, we
show only one row per domain, fixing the number of hard
goals at the feasibility borderline. Smaller numbers of goal
facts tend to be quite easy, larger ones mostly infeasible,
with variance depending on the domain and algorithm.

Conclusion
We introduced a framework for plan-space explanation via
plan-property dependencies. We believe that the framework
is useful conceptually as a problem formulation shaping a
relevant part of XAIP. Our techniques for first instantiations
of the framework exhibit reasonable performance in IPC
benchmark studies. The computed explanations are often
small and thus potentially feasible for human inspection.

In future work, the effectiveness of these explanations for
human users remains to be evaluated in user studies. An-
other important question is how to address deeper “why”
questions, asking for the reasons behind an entailment Π |=
p ⇒ q. Possible ideas are to include additional properties
into P , elucidating the causal chain between p and q; or to
find a minimal relaxation (superset) of the plan set Π for
which p no longer entails q, thus elucidating the circum-
stances under which that entailment holds. Last but not least,
of course our framework and algorithms can and should be

extended to richer planning frameworks and plan property
languages.

Acknowledgments
This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-
18-1-0245. Jörg Hoffmann’s group has also received sup-
port by the German Research Foundation (DFG) as part
of CRC 248 (see perspicuous-computing.science). Part of
this work was performed while Jörg Hoffmann was visiting
NASA Ames Research Center. We thank J. Benton, Minh
Do, Jeremy Frank, and David Smith for insightful discus-
sions.

References
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence, 173(5-6):593–
618, 2009.
T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambham-
pati. Plan explanations as model reconciliation: Moving
beyond explanation as soliloquy. In Carles Sierra, editor,
Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI’17). AAAI Press/IJCAI, 2017.

Tathagata Chakraborti, Anagha Kulkarni, Sarath Sreedha-
ran, David E. Smith, and Subbarao Kambhampati. Expli-
cability? legibility? predictability? transparency? privacy?
security? the emerging landscape of interpretable agent be-
havior. In Proceedings of the 29th International Conference
on Automated Planning and Scheduling (ICAPS’19). AAAI
Press, 2019.
Carmel Domshlak and Vitaly Mirkis. Deterministic over-
subscription planning as heuristic search: Abstractions and
reformulations. Journal of Artificial Intelligence Research,
52:97–169, 2015.
Stefan Edelkamp. On the compilation of plan constraints
and preferences. In Derek Long and Stephen Smith, editors,
Proceedings of the 16th International Conference on Au-
tomated Planning and Scheduling (ICAPS’06), pages 374–
377, Ambleside, UK, 2006. Morgan Kaufmann.
Maria Fox and Derek Long. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research, 9:367–421, 1998.
Maria Fox, Derek Long, and Daniele Magazzeni. Explain-
able planning. In Proc. IJCAI’17 Workshop on Explainable
AI, 2017.
B. Cenk Gazen and Craig Knoblock. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
S. Steel and R. Alami, editors, Proceedings of the 4th Eu-
ropean Conference on Planning (ECP’97), pages 221–233.
Springer-Verlag, 1997.
Malte Helmert and Carmel Domshlak. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioan-
nis Refanidis, editors, Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09), pages 162–169. AAAI Press, 2009.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Malte Helmert. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence, 173:503–535,
2009.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253–302, 2001.
Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu
Choi. Explainable agency for intelligent autonomous sys-
tems. In Satinder Singh and Shaul Markovitch, editors, Pro-
ceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI’17). AAAI Press, February 2017.
Tim Miller. Contrastive explanation: A structural-model ap-
proach. CoRR, abs/1811.03163, 2018.
Tim Miller. Explanation in artificial intelligence: Insights
from the social sciences. Artificial Intelligence, 267:1–38,
2019.
Hootan Nakhost, Jörg Hoffmann, and Martin Müller.
Resource-constrained planning: A Monte Carlo ran-
dom walk approach. In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Pro-
ceedings of the 22nd International Conference on Auto-

mated Planning and Scheduling (ICAPS’12), pages 181–
189. AAAI Press, 2012.
Bernhard Nebel. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research, 12:271–315, 2000.
Hector Palacios and Hector Geffner. Compiling uncer-
tainty away in conformant planning problems with bounded
width. Journal of Artificial Intelligence Research, 35:623–
675, 2009.
Bastian Seegebarth, Felix Müller, Bernd Schattenberg, and
Susanne Biundo. Making hybrid plans more clear to hu-
man users - A formal approach for generating sound expla-
nations. In Blai Bonet, Lee McCluskey, José Reinaldo Silva,
and Brian Williams, editors, Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12). AAAI Press, 2012.
David E. Smith. Choosing objectives in over-subscription
planning. In Sven Koenig, Shlomo Zilberstein, and Jana
Koehler, editors, Proceedings of the 14th International Con-
ference on Automated Planning and Scheduling (ICAPS’04),
pages 393–401, Whistler, Canada, 2004. Morgan Kauf-
mann.
David Smith. Planning as an iterative process. In Jörg
Hoffmann and Bart Selman, editors, Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI’12), pages
2180–2185, Toronto, ON, Canada, July 2012. AAAI Press.
Marcel Steinmetz and Jörg Hoffmann. Search and learn:
On dead-end detectors, the traps they set, and trap learning.
In Carles Sierra, editor, Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’17).
AAAI Press/IJCAI, 2017.
Marcel Steinmetz and Jörg Hoffmann. State space search
nogood learning: Online refinement of critical-path dead-
end detectors in planning. Artificial Intelligence, 245:1 –
37, 2017.
Tiago Stegun Vaquero, José Reinaldo Silva, Flavio Tonidan-
del, and J. Christopher Beck. itsimple: towards an integrated
design system for real planning applications. Knowledge
Engineering Review, 28(2):215–230, 2013.
Peng Yu, Brian Charles Williams, Cheng Fang, Jing Cui,
and Patrik Haslum. Resolving over-constrained temporal
problems with uncertainty through conflict-directed relax-
ation. Journal of Artificial Intelligence Research, 60:425–
490, 2017.

Design for Interpretability

Anagha Kulkarni1∗ · Sarath Sreedharan1∗ · Sarah Keren2 · Tathagata Chakraborti3

David E. Smith · Subbarao Kambhampati1

1Arizona State University
2Harvard University
3IBM Research AI

anaghak@asu.edu, ssreedh3@asu.edu, skeren@seas.harvard.edu, tchakra2@ibm.com, david.smith@psresearch.xyz, rao@asu.edu

Abstract
The interpretability of an AI agent’s behavior is of utmost
importance for effective human-AI interaction. To this end,
there has been increasing interest in characterizing and gen-
erating interpretable behavior of the agent. An alternative ap-
proach to guarantee that the agent generates interpretable be-
havior would be to design the agent’s environment such that
uninterpretable behaviors are either prohibitively expensive
or unavailable to the agent. To date, there has been work un-
der the umbrella of goal or plan recognition design exploring
this notion of environment redesign in some specific instances
of interpretable of behavior. In this position paper, we scope
the landscape of interpretable behavior and environment re-
design in all its different flavors. Specifically, we focus on
three types of interpretable behaviors – explicability, legibil-
ity and predictability – and present a general framework for
environment design that can be instantiated to achieve these
behaviors. We also discuss how specific instantiations of this
framework correspond to prior works on environment design,
and identify exciting opportunities for future work.

1 Introduction
The design of human-aware AI agents must ensure that its
decisions are interpretable to the human in the loop. Unin-
terpretable behavior can lead to increased cognitive load on
the human – from reduced trust, productivity to increased
risk of danger around the agent (Fan et al. 2008). Chris-
tensen et al. (2009) emphasises in the Roadmap for U.S.
Robotics – “humans must be able to read and recognize
agent activities in order to interpret the agent’s understand-
ing”. The agent’s behavior may be uninterpretable if the
human: (1) has incorrect notion of the agent’s beliefs and
capabilities (Zhang et al. 2017; Chakraborti et al. 2017b;
Kulkarni et al. 2019) (2) is unaware of the agent’s goals
and rewards (Dragan and Srinivasa 2013; Kulkarni, Srivas-
tava, and Kambhampati 2019) (3) cannot predict the agent’s
plan or policy (Fisac et al. 2018; Kulkarni, Srivastava, and
Kambhampati 2019). Thus, in order to be interpretable, the
agent must take into account the human’s expectations of its
behavior – i.e. the human mental model (Chakraborti et al.
2017a). There are many ways in which considerations of the
human mental model can affect agent behavior.

∗equal contribution

1.1 The Landscape of Interpretable Behavior
There has been significant interest recently in characterizing
different notions of interpretable behavior of a human-aware
AI agent (Chakraborti et al. 2019). Three important proper-
ties of interpretable behaviors emerge, namely – (1) expli-
cability: when the agent behavior conforms to the expecta-
tions of the human; (2) legibility: when the agent behavior
reveals its objectives or intentions to the observer; and (3)
predictability: when the (remaining) agent behavior can be
precisely predicted by the human.

In existing works, the generation of these behaviors was
explored from the point of view of the agent – i.e. the agent
altered its planning process by using its estimation of the
mental model of the human in the loop in order to exhibit
the desired behavior. We refer the reader to (Chakraborti et
al. 2019) for a detailed treatise of these concepts.

1.2 Environment Design
A parallel thread of work, under the umbrella of goal and
plan recognition design, has looked at the notion of chang-
ing the environment of an agent to increase interpretability
of the behaviors available to an agent. The design of envi-
ronment can be optimized in order to maximize (or mini-
mize) some objective for the actor (for example, optimal-
cost to a goal, desired behavioral property) (Zhang, Chen,
and Parkes 2009; Keren et al. 2017). An environment design
problem takes the initial environment configuration as input,
along with set of modifications allowed in the environment
and outputs a sequence of modifications, which can be ap-
plied to the initial environment to derive a new environment
in which the desired objective is optimized. The problem
of environment design is more suited for structured settings
where an actor performs repetitive objectives (for example,
on factory floors, etc). It is also suited for settings involv-
ing multiple actors, where the expectations of the observers
are the same but there are multiple actors in the environ-
ment, making environment design an effective choice (for
example, in restaurants with waiter robots where the human
customers have same expectations).

Goal (and Plan) Recognition Design In existing work,
the concept of environment design for planning agents has
been studied in the concept of goal (or plan) recognition

(a) (b) (c) (d)

Figure 1: The office assistant domain: (a) The original domain; (b) The domain can be updated for more explicable behavior by
disabling the robot coffee holder; (c) To induce legible behavior, we can add dividing walls to constrain the agent and help the
observer reduce uncertainty in their mental model; and (d) To induce predictable behavior we can reduce uncertainty about the
order of pickup by including a tray that allows the agent to pick up the objects in any order.

design (Keren, Gal, and Karpas 2014; Mirsky et al. 2019)
in order to make the goals (or plans) of an actor easier to
recognize to the observer. Immediately, this should remind
the reader of legibility (and predictability) introduced above.
The goal of this paper is to bridge the gap between these two
parallel threads of work and explore the full spectrum of in-
terpretable behavior in the context of environment design.
We will discuss how existing work in environment design
fits into this narrative and highlight much needed gaps in
existing work as exciting avenues for future work.

1.3 Why Design for Interpretability
Adopting the reasoning capabilities of an agent to deal with
the human mental model, as done in classical human-aware
decision-making versus the design of environments are in-
deed complimentary approaches towards achieving the same
purpose: behavior of the agent that is more interpretable to
the observer. While one could conceive of the most general
framework that accounts for both, it is useful to recognize
that these have their own unique set of features. Perhaps, the
biggest advantage of environment design is that the process
of generation of interpretable behavior is offloaded from the
actor onto the design process. In other words, the compu-
tational overhead of generating interpretable behavior – in
having to deal with the human mental model and reason in
the space of models – is now part of the design process only,
which can be done offline.

We will see later, in our formulation, how the actor in the
“Design for Interpretability” is modeled as a cost-optimal
agent that is able to produce interpretable behavior while
still planning in the traditional sense. In addition, design also
means that the observer does not have to count on the agent
to be cooperative and interpretable, and instead can deal with
adversarial agents as well. At the end of this paper, we will
see that this advantage does come with a caveat.

In general, the notion of interpretable behavior is com-
plemented by communication: e.g. authors in (Chakraborti,

Sreedharan, and Kambhampati 2019) balance considera-
tions of explanations and explicability, while authors in
(Chakraborti et al. 2018) balance out intention projection ac-
tions for the sake of legibility and predictability. Communi-
cation operates in model space by being able to change the
observer’s beliefs. Design, also operating in model space,
can be seen as an alternative to communication that comple-
ments the notion of interpretable behavior.

1.4 An Illustration of Design for Interpretability
Consider an office setting where an office assistant robot,
responsible for delivering items such as coffee or mail to
the employees, is about to be deployed (Figure 1a). The
robot (actor) will be supervised by office security guards
(observer) who have worked with previous generation of-
fice assistant robots and have some expectations regarding
their functions. In particular, they expect the robot to carry
one item at a time (i.e. either mail or coffee) and each robot
generally has a strong preference on the order in which it
picks up these items (though the order changes from robot
to robot). Unknown to the guards, the new model adds more
flexibility to the robot by (1) removing the need for the
robots to have fixed preference on the order to pick up items
and (2) installs a coffee cup holder that allows the robot to
carry both mail and coffee at the same time. Now if we allow
the new robot to simply act optimally in the original setting,
it would unnecessary confuse the observers.

If the robot was built to generate interpretable behavior, it
will change its behavior (and possibly settle for suboptimal
decisions in its own model) in order to conform to expecta-
tions or it will provide explanations that address these model
differences. However, the same effect can be achieved if the
designers who are deploying the robot also designed the en-
vironment to ensure that decisions of the new robot remain
interpretable to the occupants of the office.

If the designers wish to prioritize explicability, then the
change that they would need to make would be to disable the

coffee holder, this will cause the robot to choose one of the
items first, deliver it and then move on to the second one. For
explicability, it does not matter which one the robot chooses
as the user would simply assume that the order chosen by
the robot is the one enforced by the robot’s model. As for
legibility, the aim is to help the user differentiate between
the models as early as possible, one way to do it would be to
disable the coffee holder and then build introduce obstacles
as shown in Figure 1c. Finally, for predictability, the focus is
to allow the user to be able to predict the entire plan as early
as possible. One possible design for this scenario is to dis-
able the coffee holder and provide the robot with a tray that
allows the robot to carry both items at the same time. The
observer can see the tray and realizes the robot can place
both items in the tray and the order of picking up no longer
matters. In predictability, we may need to add additional ob-
stacles to further restrict the space of possible plans that can
be done by the robot (Figure 1d).

2 Background
An interpretable decision making problem involves two en-
tities: an actor (A) and an observer (O). The actor operates
in an environment while being observed by the observer.

Definition 1. An interpretable decision making problem is
a tuple, PInt = 〈PA,PO, Int〉, where:

- PA is the decision making problem of the actor A

- PO = {P iO} is observer’s mental model of the actor, rep-
resented by a set of possible decision making problems
that the observer believes that the actor may be solving.

- Int : Π → R is the interpretability score that is used to
evaluate agent plans (where Π is the space of plans)

Interestingly, we do not require that PA ∈ PO – i.e. the
problems in PO can be different from PA in all possible
aspects (e.g. state space, action space, initial state and goals).
The solution to PInt is a plan or policy that not only solves
PA but also satisfies some desired properties of interpretable
behaviors (measured through the interpretability score). The
score could reflect properties like explicability, legibility or
predictability of the plan.

Explicability The actor’s behavior is considered explica-
ble if it aligns with at least one of the observer’s expected
plans (as per their mental model). The set of plans expected
by the observer consists of all the cost-optimal solutions for
problems in PO. The target of explicability is thus to gener-
ate behavior that belongs to this set of expected plans.

Legibility With legibility, the objective of the actor is to
inform the observer about its model – i.e. reduce the size
of PO. An actor’s behavior is said to be perfectly legible if
it can be derived from only one model in PO. The longer
it takes for a plan prefix to achieve this, the worse is the
plan’s legibility. This notion of interpretability thus helps the
observer narrow down their belief over the possible actor
models as quickly as possible.

Predictability The objective of the actor with predictabil-
ity is to generate the most disambiguating behavior – i.e.
given the actor’s plan prefix, the observer should be able to
predict its completion. These predictions would be in terms
of cost-optimal completions of a given prefix in the possi-
ble problems in the mental model. This means that if there
exists the same unique completion in all of the models then
the plan is predictable even though not legible. The shorter
the length of the disambiguating plan prefix, the better the
predictability of the plan. An empty prefix would thus cor-
respond to the most predictable plan.

3 Design for Interpretability
In this section, we present a general formulation for the de-
sign problem for interpretable behaviors. Given an environ-
ment design, we assume that the actor is a rational agent and
therefore is incentivized to generate cost-optimal plans. Let
the set of cost optimal plans of the actor be Π∗PA

. A cost-
optimal plan solution to PA can exist anywhere on the spec-
trum of interpretability from high to low. Therefore, we need
a measure to quantify the interpretability score for the ac-
tor’s set of cost-optimal plans. To that end, we introduce the
worst-case interpretability score wci as follows:
Definition 2. The worst-case interpretability score wci(·),
for PInt is defined as

wci(PInt) = min
π∈Π∗

PA

Int(π) (1)

Int(·) is instantiated for each type of interpretable behav-
ior separately and is discussed in detail at the end of this
section. The higher the interpretablity score, the better the
interpretability of the behavior (in terms of either of three
properties). Therefore, the worst-case interpretability score
is the minimum interpretability score of a cost-optimal plan
of the actor.

We can now define the design problem for interpretabil-
ity. When a modification is applied to the environment, both
the actor’s decision making problem and the observer’s men-
tal model are modified, thereby changing the worst-case in-
terpretability score of the actor’s cost-optimal plans for the
given decision making problem. LetP denote the set of valid
configurations in the real environment. Although PA ∈ P ,
problems in PO might not necessarily be in P if the ob-
server has incorrect or infeasible notions about the actor’s
model. Therefore, we represent the set of configurations that
the observer thinks are possible as P̃ , and PO ⊆ P̃ .
Definition 3. The design problem for interpretability, DP-
Int, is a tuple 〈P0

Int,∆,ΛA,ΛO〉 where,

• P0
Int = 〈P 0

A,PO
0, Int〉 where P 0

A ∈ P and PO
0 ⊆ P̃

are the initial models.
• ∆ is the set of modifications that can be applied to the

environment. ξ is a sequence of modifications.
• ΛA : ∆ × P → P and ΛO : ∆ × P̃ → P̃ are the model

transition function that specify the resulting model after
applying a modification to the existing models.
The set of possible modifications includes modifying the

set of states, action preconditions, action effects, action

costs, initial state and goal. Each modification ξ ∈ ∆ is as-
sociated with a cost, such that, C(ξ) =

∑
ξi∈ξ C(ξ). After

applying ξ to both P 0
A and PO

0, the resulting actor deci-
sion making problem model and observer mental model are
represented as P |ξ|A and PO

|ξ| respectively.
Let P |ξ|Int be the modified interpretable decision making

problem after applying the modification ξ to PInt. Our ob-
jective here is to solve DP-Int such that the worst-case inter-
pretability score of PInt is maximized. Apart from that, the
design cost of ξ has to be minimized, as well as the cost of a
plan πA that solves P |ξ|A .
Definition 4. A solution to DP-Int, is a sequence of modifi-
cations ξ with

min(−wci(P |ξ|Int), C(ξ), cost(πA)) (2)

This completes the general framework of design for in-
terpretability. In the following, we will look at specific in-
stances of design for the different notions of interpretability.

3.1 Design for Explicability
In order to be explicable, the actor’s plan has to be con-
sistent with the observer’s expectations of it. The observer
has an implicit assumption that the actor is a rational agent.
Therefore the set of plans expected by the observer includes
the cost-optimal plans for all the planning models in the ob-
server’s mental model. Let Π∗PO

be the set of expected plans
for the observer. Given the set of expected plans, the explica-
bility of the actor’s plan depends on how different it is from
the expected plans. In order to quantify the explicability of
a plan, we introduce the following scoring function:
Definition 5. The explicability score Exp(·) of an actor’s
plan πA that solves PA is defined as follows:

Exp(πA) = max
π∈Π∗

PO

e−δPO
(πA,π) (3)

Here δPO
(·) computes the distance between two plans

with respect to the observer’s mental model. For example,
the distance function could compute a cost-based difference
between the two plans in the observer’s mental model. Plug-
ging this scoring function in Equation 2 allows us to instan-
tiate the design problem for explicability.

3.2 Design for Legibility
In order to be legible, the actor’s plan has to reveal its prob-
lem to the observer as early on as possible. Therefore, the
legibility of a plan is inversely proportional to the length of
its shortest prefix that has unique cost optimal completion
for more than one problem in the observer’s mental model.
Definition 6. The legibility score Leg(·) of an actor’s plan,
πA, that solves PA is defined as follows:

Leg(πA) = min
π̃A∈Π̃PA

e−|π̃A| (4)

such that ∃(P iO, P
j
O) ∈ PO, i 6= j with unique cost optimal

completion of π̃A in each model, and Π̃PA
is the set of all

prefixes of πA. Plugging this scoring function in Equation 2
allows us to instantiate the design problem for legibility.

Goal Recognition Design The work on goal recognition
design (GRD) (Keren, Gal, and Karpas 2014) is a special
case of the design problem for legibility. The GRD prob-
lem involves an actor and an observer where the observer’s
mental model consists of planning models that have the ex-
act same state space, actions and initial state as the actor’s
planning model. However, each planning model in the ob-
server’s mental model has a different goal. The actor’s true
goal is one of them, and the objective of GRD problem is
to redesign the environment, such that, the true goal of the
actor is revealed to the observer as early as possible. The in-
terpretability problem defined here is a general one, where
the observer’s mental model can be different in all possible
ways from the actor’s actual planning model.

3.3 Design for Predictability
In order to be predictable, the plan has to be the most-
disambiguating plan among the set of plans the observer
is considering – i.e. the observer should be able to predict
the rest of the plan after seeing the prefix. Therefore, pre-
dictability of a plan is inversely proportional to the length of
its shortest prefix which ensures only one optimal comple-
tion solving only a single problem in the observer’s mental
model. We can quantify the predictability score as follows:

Definition 7. The predictability score Pred(·) of an actor’s
plan πA that solves PA is defined as follows:

Pred(πA) = min
π̃A∈Π̃PA

e−|π̃A| (5)

such that ∃!π ∃P iO ∈ PO where π is an optimal comple-
tion of π̃A, and Π̃PA

is the set of all prefixes of a plan πA.
Plugging this scoring function in Equation 2 allows us to
instantiate the design problem for predictability.

Connection to Plan Recognition Design The predictabil-
ity problem corresponds to the plan recognition design
(PRD) problem (Mirsky et al. 2019). However, our proposed
framework in terms of possible observer models subsumes
the plan library based approaches in being able to support a
generative model of observer expectations.

4 Discussion and Future Work
We will now highlight limitations of the proposed frame-
work and discuss how they may be extended in the future.

Multiple decision making problems. The problem of en-
vironment design, as studied in this paper, is suitable for set-
tings where the actor performs a single repetitive task. How-
ever, our formulation can be easily extended to handle an
array of tasks that the agent performs in its environment by
considering a set of decision making problems for the actor
(Sreedharan, Chakraborti, and Kambhampati 2018), where
the worst-case score is decided by taking either minimum
(or average) over the wci(·) for the set of problems.

Interpretability Score. The three properties of inter-
pretable agent behavior are not mutually exclusive. A plan
can be explicable, legible and predictable at the same time.
In general, a plan can have any combination of the three

properties. In Equation 2, Int(·) uses one of these proper-
ties at a time. In order to handle more than one property at a
time, one could formulate Int(·) as a linear combination of
the three properties. In general, the design objective would
be to minimize the worst-case interpretability score such that
the scores for each property are maximized in the modified
environment, or at least allow the designer pathways to trade
off among potentially competing metrics.

Cost of the agent. In Section 1.3 we mentioned an advan-
tage of the design process in the context of interpretability –
the ability to offload the computational load on the actor, in
having to reason about the observer model, to the offline de-
sign stage. However, there is never any free lunch. The effect
of environment design is more permanent than operating on
the human mental model. That is to say, interpretable behav-
ior while targeted for a particular human in the loop or for a
particular interaction, does not (usually) affect the actor go-
ing forward. However, in case of design of environment, the
actor has to live with the design decisions for the rest of its
life. That means, for example, if the environment has been
designed to promote explicable behavior, the actor would
be incurring additional cost for its behaviors (than it would
have had in the original environment). This also affects not
only a particular decision making problem at hand, but also
everything that the actor does in the environment, and for all
the agents it interacts with. As such there is a “loss of auton-
omy” is some sense due to environment design, the cost of
which can and should be incorporated in the design process.

Acknowledgments
This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-
2840, the AFOSR grant FA9550-18-1-0067, NASA grant
NNX17AD06G and JP Morgan faculty research grant.

References
Chakraborti, T.; Kambhampati, S.; Scheutz, M.; and Zhang,
Y. 2017a. AI Challenges in Human-Robot Cognitive Team-
ing. arXiv:1707.04775.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017b. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAI.
Chakraborti, T.; Sreedharan, S.; Kulkarni, A.; and Kamb-
hampati, S. 2018. Projection-Aware Task Planning and
Execution for Human-in-the-Loop Operation of Robots. In
IROS.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D.;
and Kambhampati, S. 2019. Explicability? Legibility? Pre-
dictability? Transparency? Privacy? Security?: The Emerg-
ing Landscape of Interpretable Agent Behavior. In ICAPS.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2019.
Balancing Explicability and Explanation in Human-Aware
Planning. In IJCAI.
Christensen, H. I.; Batzinger, T.; Bekris, K.; Bohringer,
K.; Bordogna, J.; Bradski, G.; Brock, O.; Burnstein, J.;
Fuhlbrigge, T.; Eastman, R.; et al. 2009. A Roadmap for
US Robotics: From Internet to Robotics. Technical Report.

Dragan, A., and Srinivasa, S. 2013. Generating Legible
Motion. In RSS.
Fan, X.; Oh, S.; McNeese, M.; Yen, J.; Cuevas, H.; Strater,
L.; and Endsley, M. R. 2008. The influence of agent relia-
bility on trust in human-agent collaboration. In ECCE.
Fisac, J. F.; Liu, C.; Hamrick, J. B.; Sastry, S. S.; Hedrick,
J. K.; Griffiths, T. L.; and Dragan, A. D. 2018. Generating
Plans that Predict Themselves. In WAFR.
Keren, S.; Pineda, L.; Gal, A.; Karpas, E.; and Zilberstein, S.
2017. Equi-reward utility maximizing design in stochastic
environments. In IJCAI.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal Recognition
Design. In ICAPS.
Kulkarni, A.; Chakraborti, T.; Zha, Y.; Vadlamudi, S. G.;
Zhang, Y.; and Kambhampati, S. 2019. Explicable Robot
Planning as Minimizing Distance from Expected Behavior.
In AAMAS. Extended Abstract.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
Unified Framework for Planning in Adversarial and Coop-
erative Environments. In AAAI.
Mirsky, R.; Gal, K.; Stern, R.; and Kalech, M. 2019. Goal
and plan recognition design for plan libraries. TIST.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling Model Uncertainty and Multiplicity in Explana-
tions as Model Reconciliation. In ICAPS.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan Explicability
and Predictability for Robot Task Planning. In ICRA.
Zhang, H.; Chen, Y.; and Parkes, D. C. 2009. A general
approach to environment design with one agent. In IJCAI.

When Agents Talk Back: Rebellious Explanations

Ben Wright1 and Mark Roberts2 and David W. Aha2 and Ben Brumback2

1NRC Postdoctoral Fellow, Navy Center for Applied Research and Artificial Intelligence
2Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory
{benjamin.wright.ctr, mark.roberts, david.aha, benjamin.brumback}@nrl.navy.mil

Abstract

As the area of Explainable AI (XAI), and Explainable AI
Planning (XAIP), matures, the ability for agents to generate
and curate explanations will likewise grow. We propose a new
challenge area in the form of rebellious and deceptive expla-
nations. We discuss how these explanations might be gener-
ated and then briefly discuss evaluation criteria.

1 Introduction
Explanations as a research area in AI (XAI) has been around
for several decades (Clancey 1986; Buchanan and Shortliffe
1984; Craven 1996; Wick and Thompson 1992; Doyle et al.
2003; Sørmo et al. 2005; Weston et al. 2015; Miller 2018).
It has additionally gained momentum recently as evidenced
by the increasing number of workshops and special tracks
covering it in various conferences (e.g., VIS-xAI, FEAP-
AI4Fin, XAIP, XAI, OXAI, MAKE-eXAI, ICCBR-19 Fo-
cus area).

While still growing in use, there have been some ap-
proaches to formalizing XAI. DARPA (2016) stated that
anything calling itself XAI should address the following
questions:
• Why did the agent do that and not something else?
• When does the agent succeed and when does it fail?
• When can I trust the agent?
However, less thought out is the idea of explanations that are
deceptive or rebellious in nature. These forms of explanation
can be an entirely new area of discussion and use for certain
autonomous agents.

The study of deception and rebellion are both rich fields,
and many aspects of both that are studied in civilian and mil-
itary capacities. For example, the area of deception detection
works on finding ways to detect inconsistencies (Thomas
and Biros 2011; Kott et al. 2011; Biros et al. 2005). Isaac
and Bridewell (2017) discuss a number of ways why decep-
tion is an important topic for autonomous agents.

Studies of rebellion and resistance have investigated
how, why, when it does, and doesn’t, happen (Martı́ and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Fernández 2013; Pershing 2003b). The use of both has
also been studied (Reed 2016; Anderson et al. 2004; Kott
and Ownby 2005; Keller et al. 2015; Mourougayane and
Srikanth 2015).

The idea of pairing deception and rebellion with explana-
tions may not be intuitive initially. However, in addition to
being areas of rich study, deception and rebellion offer key
conditions that are of interest to agent reasoning. Predomi-
nately, it requires multiple actors (i.e., An actor deceives an-
other actor, or an actor rebels against a coordinator). Addi-
tionally, there needs to be some sort of conflict or misalign-
ment between the actors. Either something needs to be in
contention for an actor to rebel, or something needs to be in
conflict for the actor to use deception. b Rebellion in agents
has been a growing area of interest (Aha and Coman 2017;
Coman and Aha 2018; Dannenhauer et al. 2018; Boggs et al.
2018; Coman and Aha 2017). This area is focused on find-
ing models in which agents can rebel from directives given
in certain circumstances. This can include having more up-
to-date knowledge that would affect the plan, finding oppor-
tunities to exploit but may be off-mission, or solving prob-
lems or roadblocks before they become an issue even if it is
off-mission. (Aha and Coman 2017) discuss three ways in
which rebellion could manifest in agents. The expression of
a rebellion can consist of either an explicit or implicit act.
The focus is either inward or outward facing. Lastly, the in-
teraction initiation can either be reactive or proactive.

Deception in agents has been progressing over the last
decade, with many discussions on formalizing deception.
The majority of this formalism is on the topic of lying
(Van Ditmarsch et al. 2012; Sakama et al. 2011; Van Dit-
marsch 2014). There has also been inroads for more en-
compassing deception as described by (Sakama 2015) and
(Sakama and Caminada 2010). Of interest here, (Sakama,
Caminada, and Herzig 2014) defined Quantitative & Quali-
tative Maxims for Dishonesty as the following maxims:

1. Lie, Bullshit (BS), or withhold information as little as pos-
sible to achieve your objective.

2. Never lie if you can achieve your objective by BS.

3. Never lie nor BS if you can achieve your objective by
withholding Information.

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

4. Never lie, BS, nor withhold information if you can
achieve your objective with a half-truth.

A particular topic that has received attention is deceptive,
or dishonest, agents in negotiations (Sakama et al. 2011;
Nguyen et al. 2011; Zlotkin and Rosenschein 1991).

With these concepts in mind, we will pursue research to
answer the following:

What kind of reasoning models are required to generate
explanations of a deceptive or rebellious nature?

2 Related Work
Research into rebellion and deception have been studied for
decades in other fields. We summarize some of these studies
in this section, as they will form the foundation and context
of our approach.

2.1 Dissent
Dissent assumes a challenge to some system of power or
belief (Martin 2008). The author goes further to differenti-
ate between dissent and rebellion. Martin claims that a basic
distinction between dissent and rebellion is that dissenters
still believe in the process that has been established whereas
rebels do not.

2.2 Whistle-blowing
A number of real-world studies on dissent and whistle-
blowing in organizations showcase the importance of this
topic and area (Hamid et al. 2015; Kenny et al. 2018; Mar-
tin 2008; Pershing 2003a; Martin and Rifkin 2004). Many
of these discuss the outcomes and results towards both the
actor and the agent in these situations.

Martin and Rifkin (2004) discuss organizational re-
sponses to whistle-blowing and dissent. Manager reprisals
may include building a damaging record towards them,
threats against them, isolation, prosecution, or setting them
up for failure at their job. In a number of instances, it
seems that giving dissent, or becoming a whistle-blower, can
quickly turn into an adversarial or antagonistic situation.

2.3 Cynicism
Closely tied to dissent is the idea of cynicism. Mantere and
Martinsuo (2001) defines it as:

(1) a belief that there is a gap between desired and ob-
served organizational identity; (2) a negative affect to-
ward the organization or organizational change (strat-
egy); and (3) tendencies to disparaging and/or critical
behaviors toward the organization that are consistent
with those beliefs and affect.
They additionally give examples of cynicism as: pes-

simism, emotional/narrative expressions or outbursts, frus-
tration, irony, accusations, neglect, negative coping behav-
iors and expressions, and aggression.

2.4 Subversion
Observed actions of resistance to change have been studied
in a number of ways. Once such study (Ybema and Horvers
2017) noted that there was a tendency towards “informal or

mundane” types of resistance compared to an open, direct,
and explicit form of objection. When faced with manage-
rial initiatives, the following expressions of resistance were
noted: “careful carelessness”, humor, cynicism and skepti-
cism, nostalgic talk (i.e., the “Good ol’ Days”), alternative
articulations of self-hood, and simulation of productivity.

While these expressions of resistance were present, work-
ers were also camouflaging this dissent with a good-
humored appearance. It was noted that hiding dissent al-
lowed for behind-the-scenes inaction to stifle any new di-
rectives and also avoided many conversations that workers
deemed futile. Similar studies include (Ewick and Silbey
2003; McKay et al. 2013; Reissner 2011).

Along with giving a number of examples of resistance,
Martı́ and Fernández (2013) defined a few different kinds
of resistance. Is the resistance individual or collective in na-
ture? Covert or overt? Mundane or heroic?

While overt forms of resistance usually did not work, the
stories of that resistance remained and were used later to
continue forms of resistance.

2.5 Observational Deception Studies
There have been several studies on how deception in so-
ciety works. A very good resource is (Whiten and Byrne
1988) which defines a number of deceptive actions observed
among primates in the wild. They are categorized as either
concealment, distraction, use of a tool, or use of another
agent. Examples include hiding things from sight, looking
at things to have others avoid looking at something else,
and getting other agents to take the blame for something.
In addition to primates, there have been deceptive studies
for cephalopods (Brown et al. 2012) and dolphins (Hill et al.
2018).

In studies of deception in warfare (Reed 2016), there have
been noticeable benefits to using deception. This includes
minimizing the amount of resources for a task or ensuring
the opponents mis-allocate their resources. Also, most of
the example deceptive acts required an extended duration
of time to be executed and prove successful. This included
preparations for and performing the deceptive actions.

3 Example (Ecological Disaster)
A good case study from (Dunin-Keplicz and Verbrugge
2011) describes an ecological disaster scenario. We present
it now to provide context for explanations discussed in Sec-
tion 4. In the ecological disaster scenario, two poisons have
breached containment in a large area. Each poison is highly
dangerous on its own. However, when combined they could
be explosive. Robots on the ground have the ability to neu-
tralize specific poisons in small areas. An unmanned air ve-
hicle (UAV) can survey large areas to identify high concen-
trations of poison. A coordinator can issue commands to ei-
ther the UAV or the ground robots.

A robot can gauge the type and quantity of poisons in the
small area around it, and can move across the ground. The
UAV can scan larger areas to identify large concentrations of
individual poisons, though it reports only the highest quan-
tity. Additionally, the UAV cannot scan areas that are ob-
scured by ceilings or coverings. The coordinator receives the

information from the UAV and the Robots, but does not have
a view of their own.

Examples of rebellion here could be robots not following
commands to enter areas that would explode or the UAV de-
ciding to survey a different area to help robots on the ground
compared to an area that the coordinator instructed the UAV
to survey.

4 Example Deceptive & Rebellious
Explanations

Let us now consider explanations that are rebellious or de-
ceptive within the context given in Section 3. Some of the
recurring reasons for generating these explanations include
“makes it simpler” or “avoids a larger conversation”. These
can limit conversations but can also cause misinterpreta-
tions. It also has the ability to avoid conversation bottle-
necks, letting agents continue to perform other actions.

4.1 An Explanation with Lying
During a disaster, it may come to pass that an agent with
the ability to administer first-aid or medical attention, per-
haps they are equipped with air masks or oxygen, encoun-
ters a victim who will only let them near if they do not in-
form any law enforcement of their position. In this instance,
the agent would administer the first aid or medical treatment
and, when asked by the Coordinator to explain their activi-
ties, would say they are performing a different activity or in
a different location.

4.2 An Explanation that Withholds Information
A robot could be traversing an area trying to help people
evacuate or administer aid and they have informed the Co-
ordinator they are performing this task. However, suppose
there is a person who wishes to remain anonymous or would
refuse help. In this case, the robot could explain its actions
but leave out details that would identify the person in later
reports or debriefs. This would help save the person and in-
crease that victim’s trust in the robot to help them out of the
area.

4.3 An Explanation that is only a Half-Truth.
A version of an explanation with a half-truth could be as fol-
lows: a medical agent has found and is administering aid to a
victim, however the victim is too far gone. Keeping the vic-
tim calm with a half-truth or “white lie” explanation would
be beneficial to the victim.

4.4 An Explanation that is a Protest
An example of a protest-based explanation could come from
the following contingency. An exploratory or search agent
has encountered an area of the environment that it deems too
hazardous to continue in. The Coordinator asks why it isn’t
moving forward anymore. The agent responds with,“I will
not move forward until the hazardous area has been secured
and is safe to pass through.”

4.5 An Explanation that is Cynical
As discussed in Section 2.3, cynicism is a bit odd. It is usu-
ally used as a form of soft-resistance. The agent still per-
forms the action or command, but may not do it optimally.
An example could be that the Coordinator assigns a robot
that has a full amount of neutralizing and medical equip-
ment to survey an area. This might take a while for the robot
to execute, so the Coordinator might ask why progress is
slow, and the explanation could be “If I could fly this would
go much quicker.” Alternatively, asking to release all of its
equipment so that it can be lighter to perform the survey is
another example.

4.6 An Explanation with Disobedience
For this instance, the agent is in some sort of situation in
which it will not continue an objective given by the Coor-
dinator. Perhaps the Coordinator has tasked an agent with
neutralizing an area under a fallen concrete roof. However
the agent has noticed a victim in the area being treated by
another agent. In that instance the agent could respond to the
Coordinator, “I will not neutralize that area, there is a victim
in the vicinity. Please assign me a different objective.”

5 Enablers of Rebellious Explanations
In order to generate possible deceptive explanations as sug-
gested above an agent would require a few things in its mod-
els to properly generate a model. An agent would require
an internal model of the domain so that it can reason about
possible actions, tasks, and goals. It would also require an
internal model of the external agent’s domain model. This is
required so that when generating the “deceptive” aspect, it
can be validated against the presumed model of that agent.
In addition to these models, a few conditions should be met
as well. Notably, a discrepancy must be noticed between the
external agent’s model and the internal model in relation to
the query asked. There needs to be a specific condition or
contingency in which the truth would not maximize an over-
all objective benefit for the agent in question. Likewise, re-
bellious explanations require similar things such as internal
models for both the domain and objectives along with notic-
ing a discrepancy between the objectives, the domain, and
the agent’s internal model.

Of great interest is the work in model reconciliation
(Chakraborti et al. 2017). This is focused on maintaining
(at least) two separate models, an internal one to the agent,
and an external one for someone interacting with the agent.
The idea is for the agent to reconcile any differences be-
tween these two versions to formulate an explanation. This
approach is promising in regards to expanding it towards
rebel or deceptive tasks in explanation.

In the case of either deceptive or rebellious explanations, a
discrepancy is required. This has been an active research fo-
cus. Ingrand and Ghallab (2017) survey work on discrepancy
detection. Useful to this thread of research, (Molineaux, et
al. 2010) discusses it in the context of goal reasoning.

In terms of reasoning models, (Roberts et al. 2018) dis-
cuss some interesting concepts in relation to Goal Networks.
A life cycle for goals is also discussed. Combining these

goal networks and the temporal nature of goal life cycles, a
goal timeline develops. This timeline structure can represent
the reasoning needed for some of the explanation models
once discrepancies have been detected.

Utilizing models of the world that are not in the ex-
plainer’s original model is both challenging and novel to
pursue for several reasons. It requires an agent to distin-
guish between different viewpoints of explanations. Intro-
duces reasoning over viable explanations that can be gener-
ated. Requires a conversation concerning the ethics of de-
ciding when an agent can decide to deceive. Finally, it opens
up the area of XAI to new sets of scenarios - namely those
that are deceptive or rebellious.

6 Evaluation
To facilitate the development of deceptive or rebellious ex-
planations, we will need a way to evaluate them. We pro-
pose a few areas that may be suitable for such testing. One
such testing ground is the RoboCup Rescue. This is a popu-
lar disaster simulation (Kitano and Tadokoro 2001) that can
be leveraged to simulate examples similar to those given in
Section 3. Various games and game simulations may prove
useful to test for these explanations. Some game options
include Minecraft, One Night Ultimate Werewolf, Secret
Hitler, Clue, and Diplomacy. Other relevant domains may
include those that involve unmanned air and underwater ve-
hicles. These vehicles require a large amount of autonomy
and can be utilized in areas where discrepancies between an
operator’s situation awareness and the vehicle’s belief state
differ dramatically.

Along with testing simulations, we can also look at mea-
sures of explanation effectiveness. Some of these measures
can include clarity, timeliness, or correctness. Did the ex-
planation answer the query? How easy was the explanation
to understand? Was the time it took to respond seen as ade-
quate? Is the user’s attitude toward the agent lower or higher
given this form of explanation?

Acknowledgements This research was performed while
the first author held an NRC Research Associateship award
at NRL. Thanks to DARPA and NRL for supporting this re-
search. The views, opinions and/or findings expressed are
those of the authors and should not be interpreted as repre-
senting the official views or policies of the Department of
Defense or the U.S. Government.

References
Aha, D. W., and Coman, A. 2017. The AI Rebellion: Chang-
ing the Narrative. In 31st AAAI Conf. on AI.
Anderson, E. A.; Irvine, C. E.; and Schell, R. R. 2004. Sub-
version as a Threat in Information Warfare. Journal of In-
formation Warfare 3(2):51–64.
Biros, D. P.; Hass, M. C.; Wiers, K.; Twitchell, D.; Adkins,
M.; Burgoon, J. K.; and Nunamaker, J. F. 2005. Task Per-
formance Under Deceptive Conditions: Using Military Sce-
narios in Deception Detection Research. In Proc. of the
38th Annual Hawaii Int’l Conf. on System Sciences, 22b–
22b. IEEE.

Boggs, J.; Dannenhauer, D.; Floyd, M.; and Aha, D.
2018. The Ideal Rebellion: Maximizing Task Performance
in Rebel Agents. In 6th Goal Reasoning Workshop at
IJCAI/FAIM-2018.
Brown, C.; Garwood, M. P.; and Williamson, J. E. 2012. It
Pays To Cheat: Tactical Deception in a Cephalopod Social
Signalling System. Biology letters 8(5):729–732.
Buchanan, B. G., and Shortliffe, E. H. 1984. Explanation
as a Topic of AI Research. Rule-based expert systems: the
MYCIN experiments of the Stanford Heuristic Programming
Project 331.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proc. of the
26th IJCAI, 156–163. AAAI Press.
Clancey, W. J. 1986. Intelligent Tutoring Systems: A Tu-
torial Survey. Technical report, Standford Univ CA Dept of
Computer Science.
Coman, A., and Aha, D. W. 2017. Cognitive Support for
Rebel Agents: Social Awareness and Counternarrative Intel-
ligence. In Proc. of the 5th Conf. on Advances in Cognitive
Systems.
Coman, A., and Aha, D. W. 2018. AI Rebel Agents. AI
Magazine 39(3):16–26.
Craven, M. W. 1996. Extracting Comprehensible Models
from Trained Neural Networks. Technical report, University
of Wisconsin-Madison Department of Computer Sciences.
Dannenhauer, D.; Floyd, M.; Magazzeni, D.; and Aha,
D. 2018. Explaining Rebel Behavior in Goal Reasoning
Agents. In Explainable AI Planning Workshop at ICAPS
2018.
DARPA. 2016. Broad Agency Announcement:
Explainable Artificial Intelligence (XAI). Online.
https://www.darpa.mil/attachments/DARPA-BAA-16-
53.pdf.
Doyle, D.; Tsymbal, A.; and Cunningham, P. 2003. A Re-
view of Explanation and Explanation in Case-Based Rea-
soning. Technical report, Trinity College Dublin, Depart-
ment of Computer Science.
Dunin-Keplicz, B., and Verbrugge, R. 2011. Teamwork in
Multi-Agent Systems: A Formal Approach, volume 21. John
Wiley & Sons.
Ewick, P., and Silbey, S. 2003. Narrating Social Structure:
Stories of Resistance to Legal Authority. American journal
of sociology 108(6):1328–1372.
Hamid, M. H.; Othman, Z.; et al. 2015. Whistleblowing and
Voicing Dissent in Organizations. Int’l Journal of Manage-
ment 6(1):8–15.
Hill, H. M.; Dietrich, S.; Cadena, A.; Raymond, J.; and
Cheves, K. 2018. More Than a Fluke: Lessons Learned
From a Failure to Replicate the False Belief Task in Dol-
phins. Int’l Journal of Comparative Psychology 31.
Ingrand, F., and Ghallab, M. 2017. Deliberation for Au-
tonomous Robots: A Survey. Artif. Intell. 247:10–44.

Isaac, A., and Bridewell, W. 2017. White Lies on Silver
Tongues: Why Robots Need to Deceive (and How). Robot
Ethics 2:157–72.
Keller, K. M.; Miller, L. L.; Robson, S.; Farris, C.; Stucky,
B. D.; Oshiro, M.; and Meadows, S. O. 2015. An Integrated
Survey System for Addressing Abuse and Misconduct To-
ward Air Force Trainees During Basic Military Training.
Technical report, Rand Project Air Force Santa Monica CA.
Kenny, K.; Fotaki, M.; and Vandekerckhove, W. 2018.
Whistleblower Subjectivities: Organization and Passionate
Attachment. Organization Studies 0170840618814558.
Kitano, H., and Tadokoro, S. 2001. Robocup Rescue: A
Grand Challenge for Multiagent and Intelligent Systems. AI
Magazine 22(1):39–52.
Kott, A., and Ownby, M. 2005. Tools for Real-Time
Anticipation of Enemy Actions in Tactical Ground Op-
erations. Technical report, Defense Advanced Research
Projects Agency Arlington VA.
Kott, A.; Singh, R.; McEneaney, W. M.; and Milks, W. 2011.
Hypothesis-Driven Information Fusion in Adversarial, De-
ceptive Environments. Information Fusion 12(2):131–144.
Mantere, S., and Martinsuo, M. 2001. Adopting and Ques-
tioning Strategy: Exploring the Roles of Cynicism and Dis-
sent. In 17th European Group for Organisation Studies Col-
loquium.
Martı́, I., and Fernández, P. 2013. The Institutional Work of
Oppression and Resistance: Learning From the Holocaust.
Organization Studies 34(8):1195–1223.
Martin, B., and Rifkin, W. 2004. The Dynamics of
Employee Dissent: Whistleblowers and Organizational Jiu-
Jitsu. Public Organization Review 4(3):221–238.
Martin, B. 2008. Varieties of Dissent. Dissent and the
Failure of Leadership 22–36.
McKay, K.; Kuntz, J. R.; and Näswall, K. 2013. The Ef-
fect of Affective Commitment, Communication and Partici-
pation on Resistance to Change: The Role of Change Readi-
ness. New Zealand Journal of Psychology (Online) 42(2):29.
Miller, T. 2018. Explanation in Artificial Intelligence: In-
sights from the Social Sciences. Artif. Intell.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
Driven Autonomy in a Navy Strategy Simulation. In Proc.
of the 24th AAAI Con. on AI.
Mourougayane, K., and Srikanth, S. 2015. Intelligent Jam-
ming Threats to Cognitive Radio Based Strategic Communi-
cation Networks-A Survey. In 2015 3rd Int’l Conf. on Signal
Processing, Communication and Networking, 1–6. IEEE.
Nguyen, N.-H.; Son, T. C.; Pontelli, E.; and Sakama,
C. 2011. ASP-Prolog for Negotiation Among Dishonest
Agents. In Int’l Conf. on Logic Programming and Nonmono-
tonic Reasoning, 331–344. Springer.
Pershing, J. L. 2003a. To Snitch or Not To Snitch? Ap-
plying the Concept of Neutralization Techniques to the En-
forcement of Occupational Misconduct. Sociological Per-
spectives 46(2):149–178.

Pershing, J. L. 2003b. Why Women Don’t Report Sexual
Harassment: A Case Study of an Elite Military Institution.
Gender issues 21(4):3–30.
Reed, J. A. 2016. Know Thy Team, Know Thy Enemy:
Using Deception Teams to Achieve Air Superiority. Techni-
cal report, Air Command and Staff College, Air University
Maxwell AFB United States.
Reissner, S. C. 2011. Patterns of Stories of Organisational
Change. Journal of Organizational Change Management
24(5):593–609.
Roberts, M.; Monteath, I.; Sheh, R.; Aha, D.; Jampathom,
P.; Akins, K.; Sydow, E.; Shivashankar, V.; and Sammut, C.
2018. What Was I Planning to Do? In Explainable AI Plan-
ning Workshop at ICAPS 2018.
Sakama, C., and Caminada, M. 2010. The Many Faces of
Deception. Proc. of the 30 Yrs of Nonmonotonic Reasoning.
Sakama, C.; Caminada, M.; and Herzig, A. 2014. A for-
mal account of dishonesty. Logic Journal of the IGPL
23(2):259–294.
Sakama, C.; Tran, S. C.; and Pontelli, E. 2011. A Logical
Formulation for Negotiation Among Dishonest Agents. In
22nd IJCAI.
Sakama, C. 2015. A Formal Account of Deception. In 2015
AAAI Fall Symposium Series.
Sørmo, F.; Cassens, J.; and Aamodt, A. 2005. Explanation in
Case-Based Reasoning–Perspectives and Goals. Artif. Intell.
Review 24(2):109–143.
Thomas, J., and Biros, D. 2011. A Conceptual Model of
Real World, High Stakes Deception Detection. In 2011 44th
Hawaii Int’l Conf. on System Sciences, 1–10. IEEE.
Van Ditmarsch, H.; Van Eijck, J.; Sietsma, F.; and Wang, Y.
2012. On the Logic of Lying. In Games, actions and social
software. Springer. 41–72.
Van Ditmarsch, H. 2014. Dynamics of Lying. Synthese
191(5):745–777.
Weston, J.; Bordes, A.; Chopra, S.; Rush, A. M.; van
Merriënboer, B.; Joulin, A.; and Mikolov, T. 2015. To-
wards AI-Complete Question Answering: A Set of Prereq-
uisite Toy Tasks. arXiv preprint arXiv:1502.05698.
Whiten, A., and Byrne, R. W. 1988. Tactical Deception in
Primates. Behavioral and brain sciences 11(2):233–244.
Wick, M. R., and Thompson, W. B. 1992. Reconstructive
Expert System Explanation. Artif. Intell. 54(1-2):33–70.
Ybema, S., and Horvers, M. 2017. Resistance Through
Compliance: The Strategic and Subversive Potential of
Frontstage and Backstage Resistance. Organization Studies
38(9):1233–1251.
Zlotkin, G., and Rosenschein, J. S. 1991. Incomplete Infor-
mation and Deception in Multi-Agent Negotiation. In IJCAI,
volume 91, 225–231.

Challenges of Explaining Control

Adrian Agogino1, Ritchie Lee2, Dimitra Giannakopoulou1

1NASA Ames Research Center
2Stinger Ghaffarian Technologies, Inc. (SGT)

NASA Ames Research Center, MS 269-1
Moffett Field, California 94035

{adrian.k.agogino,ritchie.lee,dimitra.giannakopoulou}@nasa.gov

Abstract

Reinforcement learning and evolutionary algorithms are used
increasingly in the development of sophisticated control so-
lutions for autonomous systems. However, it is challenging
to trust such solutions for safety-critical systems because the
rationale behind the control decisions they produce is ob-
fuscated, and hidden behind parameters that are not directly
related to the problem they target. Several approaches have
been proposed to explain standard supervised learning algo-
rithms, but these approaches cannot be readily applied to con-
trol algorithms due to the time-extended nature of the lat-
ter. This paper experiments with six techniques in order to
develop explanations for autonomous, learning-based con-
trol: 1) Bayesian rule lists, 2) Function analysis, 3) Single
time step integrated gradients, 4) Grammar-based decision
trees, 5) Sensitivity analysis combined with temporal model-
ing with LSTMs, and 6) Explanation templates. These tech-
niques are tested on a simple 2d domain, where a simulated
rover attempts to navigate through obstacles to reach a goal.
For control, this rover uses an evolved multi-layer perception
that maps an 8d field of obstacle and goal sensors to an ac-
tion determining where it should go in the next time step. Re-
sults show that some simple insights in explaining the neural
network are possible, but that good intuitive explanations are
difficult.

Introduction
Explanation of machine learning algorithms is a challenging
and important field of research. Most techniques to date have
focused on supervised learning algorithms, such as image
processing, text processing and medical diagnosis (Letham
et al. 2015; Gunning). Instead of supervised learning, this
paper focuses on reward based machine learning such as re-
inforcement learning and evolutionary algorithms, where re-
wards are given to measure performance instead of using
examples of what is correct. The nature of reward learning
and supervised learning is different in both problem domains
and learning tools used to solve these problems. In this paper
we look at explainability techniques that have been designed
for supervised learning problems and apply them to reward
learning problems.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Reinforcement learning and evolutionary algorithms can
be used to automatically learn high performance control sys-
tems for complex problems (Floreano and Mondada 1994;
Crites and Barto 1996; Agogino, Stanley, and Miikkulainen
2000). This is particularly the case in the context of auton-
omy where control may involve many variables and need to
dynamically adapt to different environments and situations.

A common form of machine learning is to train a set of
weights of a neural network-based control policy. Based on
inputs (such as sensors) the control policy can command
control actions (such as speed and direction of a vehicle).
Training is typically done with a simulator, where the learn-
ing algorithm attempts to improve the performance of the
control policy through a long series of trials. The goal of this
training process is to produce a high-performance non-linear
control policy that takes inputs and produces controls.

While a successful training will produce a control policy
that achieves high performance in simulation, how the con-
trol policy actually works will typically be unclear to its pro-
grammers, let alone its end-users. Due to this fact, machine
learning algorithms are often referred to as “blackbox”: their
inputs and outputs can be viewed, but there is no knowledge
of their internal workings.

Even when machine learning achieves high performance,
it can be difficult to trust for two reasons: 1) coverage, and
2) generalizability. In terms of coverage, while an algorithm
may have performed well in scenarios that were tested, there
may be other likely scenarios where it would have performed
very poorly. In addition since coverage of machine learning
algorithms is largely dependent on the data set, the user may
not even be aware of the algorithm’s coverage and can eas-
ily overlook large gaps in the data sets. In terms of gener-
alizability, while the algorithm performed well in the sim-
ulator it may not perform well in the real world or in envi-
ronments that are slightly different than the simulated one.
These problems can be exacerbated by the blackbox nature
of these learning algorithms, where reward hacking, poorly
defined utility functions or simple errors in the simulator can
lead to unrealistically high levels of performance that cannot
be achieved when deployed. In addition, machine learning
algorithms have many unintuitive parameters that have no
obvious relation to the underlying control problem, such as

number of hidden nodes and learning rates. Yet poor choices
of these parameters can lead to poor generalization.

Improving explainability of these blackbox algorithms
can help improve trust that they will behave as expected
when deployed (Gunning). If a control decision is backed up
by a meaningful and understandable rationale, then one can
trust that the decision is not made “by chance”, and therefore
the system can be expected to behave well in other similar
circumstances. Additionally, if we understand a learned con-
trol algorithm, we can see if there are any clear gaps in cov-
erage, or if there are any obvious flaws that would prevent it
from generalizing outside of the simulated environment. On
the other hand, what constitutes a meaningful, understand-
able explanation?

Providing explanations of machine learning is a very ac-
tive research field. Several approaches have been proposed
for standard supervised learning algorithms. Despite this
fact, it is still unclear what types of explanations may be
suitable in practice. Control further complicates the picture,
because control strategies develop over time, and are typi-
cally not evaluated over snapshots. How can such strategies
be captured in explanations and what type of explanations
would those be?

To address this problem, we have experimented with a va-
riety of techniques to provide explanations in the context of
a very simple machine learning algorithm that we developed
for navigating a rover towards a goal while avoiding obsta-
cles. We decided to build the algorithm from scratch in order
to evaluate the pitfalls and errors that may occur in develop-
ing such systems, as well as how/what explanations may as-
sist in detecting those. We used six techniques in order to de-
velop explanations: 1) Bayesian rule lists, 2) Function anal-
ysis, 3) Single time step integrated gradients, 4) Grammar-
based decision trees, 5) Sensitivity analysis combined with
temporal modeling with LSTMs, and 6) Explanation tem-
plates. This set of techniques was chosen as it represents a
diverse set of explanations that could be readily applied to
control data. In particular, it includes both local and global
explanations. These local attempt to explain a single control
action in a particular state. To form a big picture of a con-
trol policy with local explanations, we would want many lo-
cal explanations covering many different states. In contrast
global explanations try to explain an overall action policy
over all states.

The remainder of the paper is organized as follows. We
first present the example obstacle avoidance problem we use
throughout the paper. Then we describe the neural network
controller and the Monte Carlo algorithm used to determine
the weights of the neural network. We subsequently discuss
the need for explainability and how simple analysis of algo-
rithm performance may be insufficient. To address this we
present six different explainability algorithms applied to the
example problem and discuss their relative merits.

Test Problem
We test our explainability methods on a simple test prob-
lem, where a rover moving on a 2d plane tries to navigate
towards a goal while avoiding obstacles. It does this with a
neural network that maps goal and obstacle sensors into a

control action that determines the speed and direction of the
rover for the next time step. The weights of this neural net-
work are determined with an evolutionary algorithm using a
simulation of the environment.

Environment and Utility
In our test domain, a rover attempts to reach a single goal
while avoiding 100 obstacles placed randomly on an x-y
plane (see Figure 1). The rover starts in the middle of the ob-
stacle field and the goal is located above the obstacle field.
At each time step the rover takes a small movement in the
x and y direction. At the end of 70 time steps, the rover’s
performance is evaluated.

Goal	

Start	

Obstacles	
Path	to	Goal	

Figure 1: Obstacle Avoidance Problem. A rover attempts to
navigate towards a goal while avoiding obstacles in a 2-d
plane.

Sensors
At every time step, the rover senses the world through eight
continuous sensors (Agogino and Tumer 2004). From a
rover’s point of view, the world is divided up into four quad-
rants with fixed orientation to the x-y axis, with two sensors
per quadrant (see Figure 2 Left). For each quadrant, the first
sensor returns a function of the obstacles in the quadrant at
time t. Specifically the first sensor for quadrant q returns
the sum of inverse square distances from an obstacle to the
rover:

s1,t =
∑
j∈Jq

1

δj
2 ,

where Jq is the set of obstacles in quadrant q and δj is the
euclidean distance from obstacle j to the rover. The sec-
ond sensor, s2,t, returns the inverse square distance from the
rover to all the goals in each quadrant at time t. In our case
since there is only one goal, only the quadrant that contains
the goal will have a non-zero value, which is 1/d2 where d
is the euclidean distance from the rover to the goal.

The sensor space is broken down into four regions to facil-
itate the input-output mapping. There is a trade-off between
the granularity of the regions and the dimensionality of the
input space. In some domains the tradeoffs may be such that
it is preferable to have more or fewer than four sensor re-
gions.

Rover Control Strategies
With four quadrants and two sensors per quadrant, there are
a total of eight continuous inputs. This eight dimensional

Obstacle	
Sensors	

Obstacles	

Goal	

Goal	Sensors	

Neural	Network	

Figure 2: Rover Sensors. The rover has 8 sensors: 4 obstacle
sensors and 4 goal sensors. Each sensor observes the pres-
ence of objects in its quadrant based on a sum of inverse
squared distances. More objects and closer objects there in-
crease sensor value. Sensors are inputs to a neural network
that produces a control action determining x, y movement in
the next time step.

sensor vector constitutes the state space for a rover. At each
time step the rover uses its state to compute a two dimen-
sional output. This output represents the x, y movement rel-
ative to the rover’s location and orientation.

The mapping from rover state to rover output is done
through a Multi Layer Perceptron (MLP) (Haykin 1998),
with eight input units, ten hidden units and two output units
1. The MLP uses a sigmoid activation function, therefore the
outputs are limited to the range (0, 1). The actual rover mo-
tions dx and dy, are determined by normalizing and scal-
ing the MLP output by the maximum distance the rover can
move in one time step. More precisely, we have:

dx = 2dmax(o1 − 0.5)

dy = 2dmax(o2 − 0.5) ,

where dmax is the maximum distance the rover can move in
one time step, o1 is the value of the first output unit, and o2
is the value of the second output unit.

Monte Carlo Algorithm
We use a simple 2-phase Monte Carlo algorithm to deter-
mine the weights for the neural network controller. In the
first phase, the weights for each Monte Carlo run are set to a
value between -6 and 6 sampled from a uniform distribution.
After the weights are selected the rover is evaluated in a sim-
ulation for 70 time steps, and its performance is recorded.
1000 Monte Carlo runs are performed in this first phase.

In the second phase, for each Monte Carlo run, the
weights are copied from the neural network with the best
performance in the first phase. The weights of this copy are
then mutated by adding noise selected from a uniform dis-
tribution in the range -0.05 to 0.05. 200 Monte Carlo runs
are performed from this second phase and the weights of the

1Note that other forms of continuous reinforcement learners
could also be used instead of evolutionary neural networks. How-
ever neural networks are ideal for this domain given the continuous
inputs and bounded continuous outputs.

best performing rover are saved as the final solution of the
algorithm.

The reward used to evaluate each Monte Carlo run is as
follows:

R =

T∑
t=0

100s2,t − s1,t

where s2,t is the goal sensor value and s1,t is the sum of ob-
stacle sensor values at time t run for T time steps. This util-
ity goes up when the rover gets closer to the goal and down
when it gets close to obstacles. Note that the goal sensor is
scaled since the rover is usually much closer to obstacles
than the goal.

Explainability
At the completion of the Monte Carlo algorithm we have
a neural network capable of controlling a rover in our test
problem. Traditionally we would test this controller by run-
ning it and observing how it performs, such as by looking at
the path it took as shown in Figure 1. We can also look at
how its performance improved during training. For instance
Figure 3 shows that while random neural networks tend to
perform poorly, there are a few that perform much better
than average. The figure also shows that in Phase 2 of train-
ing that performance improves, but not significantly.

Pe
rfo

rm
an

ce

Monte Carlo Number Monte Carlo Number

Monte Carlo Training

Random Weights Weights mutated from previous winner

1000 Samples 200 Samples

Final
winner

Figure 3: Rover Performance during training, displayed as
negative reward. Left: In the first 1000 Monte Carlo runs,
performance varies considerably. Right: The next 200 Monte
Carlo runs are based on the best sample from the first thou-
sand (performance of this sample shown in blue line).

While this analysis gives some insight into the perfor-
mance of the neural network controller, it does not tell us
how it actually operates. In particular, it does not tell us if
the controller has any hidden failure modes that we should
be aware of. Machine learning algorithms and neural net-
works in particular can have many subtle failures that not be
apparent in basic testing. A neural network is represented by
a large collection of interconnected weights and inspecting
the values of these weights is usually not helpful in deter-
mining if the network is operating correctly. As an example
of such a failure, when we first trained our neural network on
the obstacle avoidance problem, we accidentally limited the
range of possible weight values to be on too narrow of inter-
val for the neural network to fully approximate non-linear
functions. While the training went smoothly and the algo-
rithm produced a viable control policy, the performance of
this control policy was significantly lower than what it could

have been due to this error. Ultimately a unit test, testing
the ability of the neural network to approximate a sine wave
revealed this issue.

While performance tests and unit tests give some insight
into how a neural network is operating, we would like addi-
tional explanations of how a trained neural network is ac-
tually operating. In this paper we attempt to analyze our
neural network using several different explainability meth-
ods: 1) Bayesian rule lists, 2) Function analysis, 3) Single
time step integrated gradients, 4) Grammar-based decision
trees, 5) Sensitivity analysis combined with temporal mod-
eling with LSTMs, and 6) Explanation templates. This set
of techniques was chosen as it represents a diverse set of
explanations that could be readily applied to control data.
In this set, integrated gradients provides a local explanation
that attempts to explain a single control action in a partic-
ular state. The rest of the explanations are more global in
that they attempt to explain the overall control policy inde-
pendent of state. Another factor is temporal as a control pol-
icy attempts to maximize reward over time. Of our explana-
tions only grammar-based decision trees and modeling with
LSTMs explicitly attempts to reason over time. In general,
the temporal aspect of control makes explanations difficult
and complex, therefore most of our explanations attempt to
explain individual actions rather than an entire sequence of
actions.

Bayesian Rule Lists

Explanations in terms of Bayesian Rule Lists
(BRL) (Letham et al. 2015) consist of a list of if-then
rules predicated on the controller’s inputs. These rules are
generated looking at the input/output data associated with
the controller, not looking at the neural network itself.
Since the domain is continuous and the rules are discrete,
a mapping between the domain and the rules needs to be
created.

For our example problem we created a simple mapping
by hand. For the obstacle sensors, we converted the val-
ues of the four quadrants into one of four categorical labels
(up, down, left and right), signifying which quadrant had the
greatest value. For instance if left quadrant had the greatest
value then the label would be “left.” The outputs of the con-
troller are converted to two binary values corresponding the
x and y values of the output. When the y output has a pos-
itive value then its label is 1, otherwise its value is 0. The
x value is encoded similarly. To simplify the mapping we
ignore the values of the goal sensor and tested the rover in
an area where the obstacle sensors dominated. Given these
mappings we can convert a set of sensor and control action
data into a set of labels.

We performed a BRL extraction using a control run of 70
time steps. Doing this, we can generate four separate rules
for going up, down, left and right. The results for the up rule
were as follows:

if obstacles to left
go up with probability .19

else if obstacles are up
go up with probability .87

else
go up with probability .07

Notice that the second rule is somewhat problematic. The
neural network actually wants to head towards an obstacle
when it is close by. On further inspection, we saw that in-
deed the rover tends to head towards obstacles, but also turns
enough as it is doing so to avoid the obstacle. While effec-
tive, this strategy would not seem satisfactory for safety crit-
ical systems.

While the BRL was able to expose a potential hazard in
the controller, it tended to be hard to use and did not give
much insight into the full behavior of the controller. In ad-
dition, since it treats the controller as a black box, BRL is
only able to characterize observed behavior and could miss
important properties of the controller that were not observed
in the training data.

Activation Analysis
Our next analysis of the neural network controller is to look
at the shape of the input/output functions. For each quadrant
in the sensor field there are three functions. The up sensor
functions are as follows (the other mappings are appropri-
ately rotated according to the sensor orientation) 1) Mapping
from obstacle sensor to Y control action, 2) Mapping from
obstacle sensor to X control action, and 3) Mapping from
goal sensor to Y control action. The plots of these functions
are shown in Figure 4. From the plot we can see that the
goal sensor controller behaves as expected. When the goal
is present in a sensor, the controller tends to move towards
the goal. However the obstacle sensor controllers are a bit
more non-intuitive. When the rover gets close to obstacles
in the up direction, the X controller will move the rover to
the right. However if it gets very close to the obstacles the X
controller will start moving in the left direction. Even more
worrisome is that when obstacles are close the Y controller
will accelerate towards them. This analysis confirms the ex-
planation rules created by the Bayesian Rule List.

Sensitivity Analysis
One way to test some of the properties of a neural network
directly is to test the sensitivity of the inputs to the out-
puts (Tulio Ribeiro, Singh, and Guestrin 2016; Sundarara-
jan, Taly, and Yan 2017). This analysis may be able to tell us
for a particular location, which inputs are the most important
to the controller’s decision.

Gradient Analysis The most basic form of sensitivity
analysis is gradient analysis where we measure the gradient
of the input with respect to the outputs. This can be accom-
plished in neural networks using backpropagation. To test
this analysis we created a scenario where a rover is located
right below the location of an obstacle (see Figure 5). In this
scenario we then calculated the gradient of each of the four
obstacle sensors with respect to the controller output. The
results are as follows:

Goal Sensor
To Control Y

Obstacle Sensor
To Control Y Obstacle Sensor

To Control X

Input Value

O
ut

pu
t V

al
ue

Figure 4: Neural Network Controller Functions. Function
analysis shows rover should move towards goal as expected.
However, rover also has a tendency to move towards obsta-
cles. It only avoids them by turning when it gets close.

Up: 0.031
Left: 0.227
Down: 0.120
Right: 0.139

Rover	

Obstacle	
Goal	

Figure 5: Scenario for Sensitivity Analysis.

This result shows the limitation of basic gradient analysis.
We would expect the Up sensor to be the most important to
the control, since there is an obstacle very close in the up di-
rection. However, since the rover is so close to the obstacle
this sensor saturated so any small change in its value causes
almost no change control action. Therefore this sensor actu-
ally has the smallest gradient, which is the opposite of what
we would hope in terms of explainability. Instead of look-
ing at only local changes in its value we need to look at the
effects of larger changes.

Integrated Gradients Integrated gradients attempts to
solve this limitation of local gradients by adding a series of
gradients from the sensor value of interest down to a baseline
sensor value. In this way any important change that happens
along this path will be recorded. To test integrated gradients
we perform a test where the baseline sensor has a value of
zero in all four quadrants and calculate 100 gradients from
rover position in our scenario down to the baseline value.
The results are as follows:

Up: 14.67
Left: 16.40
Down: 11.10
Right: 12.00

These results are somewhat more satisfying as the up sensor
now has the second largest value.

Explanation Template
Our next attempt at explaining the behavior of the neural
network is to model its global properties with respect to an
understandable control algorithm (Chandrasekaran, Tanner,
and Josephson 1989). We call this control algorithm an “ex-
planation template.” This template comprises a simple con-
trol algorithm that is easy to comprehend with free param-
eters that are determined by analyzing the behavior of the
neural network. We tried this technique using a simple lin-
ear policy. Here is the policy template for the upward look-
ing goal and obstacle sensors:

vup = w0so,u + w1sg,u

vright = w2so,u

where vup and vright are the up and right velocities for the
next time step, so,u is the value for the upward looking ob-
stacle sensor, sg,u is the value for the upward looking goal
sensor, and w0, w1, w2 are the free parameters. Using data
from 50 trials of the rover we performed linear regression
and found the values of the free parameters producing the
following explanation of the system:

vup =
so,u
803

+
sg,u
6139

vright =
so,u
1585

This explanation shows that the neural network has a small
tendency to move towards the goal, but a large tendency to
move towards an obstacle. It is able to avoid obstacles as it
also has a tendency to move right when it approaches an ob-
stacle. These findings are consistent with the function anal-
ysis and the Bayesian rule lists.

Grammar-Based Decision Trees
Our next attempts use grammar-based decision trees (GB-
DTs) (Lee et al. 2018). The idea is to learn an interpretable
model from data and then inspect the learned rules to gain
insight into system behavior. GBDT generalizes a traditional
decision tree, where the decision rules are Boolean expres-
sions derived from a context-free grammar. The grammar
allows any logical language to be used and the user can
tune the grammar for explainability. GBDT has been shown
to provide good representational ability while being inter-
pretable (Lee et al. 2018). GBDT can model different types
of data by choosing an appropriate grammar. For example,
a grammar based on first-order logic can be used to model
static data, while a grammar based on temporal logic can be
used to model time series data. We explored two approaches
to applying the GBDT model. The first approach models the
input-output behavior of the neural network policy and the
second approach models the time series data that the policy
and its environment together produces.

GBDT Control Policy Modeling In this first GBDT ap-
proach, we model the input-output behavior of the neural
network policy. We learn an interpretable model that approx-
imates the behavior of the policy and then inspect the learned
rules to gain insight into the decisions of the policy.

To construct the training data for the GBDT, we use the
input-output pairs of the neural network policy seen during
its training. Since the output of the neural network policy is a
relative position in 2d, but GBDT can only produce discrete
output, we take the relative angle of the network output and
round it to the nearest 45 degrees. We use a simple grammar
consisting of comparison operators less than < and greater
than > operating on the input features xid; and logical op-
erators conjunction ∧, disjunction ∨, and negation ¬ that
enable the formation of more complex expressions. The full
grammar is shown in Figure 6.

b 7→ (b ∧ b) | (b ∨ b) | ¬b
b 7→ (X[xid] < X[xid]) | (X[xid] > X[xid])

xid 7→ top | left | bottom | right

Figure 6: GBDT Grammar for Modeling Control Policy.

The GBDT was trained using genetic programming (Koza
1992) to optimize each rule of the tree (Lee et al. 2018).
The resulting GBDT, shown in Figure 7, attained 85.5% ac-
curacy. The GBDT found two rules to distinguish between
three policy outputs up, up left, and up right. The reason
there are only three actions used is because the goal is lo-
cated above the start point, so those are the primary actions
required for successful navigation. In Figure 7, if there are
more obstacles to the left than to the bottom, then go up
and to the left. This behavior can be observed in the two
up left segments in Figure 1 as the agent navigates toward
and around the cluster of the obstacles to the left. The second
rule has two terms. If bottom is greater than right and top is
greater than left, then move up. This behavior is seen in Fig-
ure 1 as the rover moves away from obstacles to the bottom
passing obstacles to the right. As the rover approaches the
goal, there are no obstacles to the top or left, so top equals
left and the second rule becomes false. In this case, the out-
put is up right.

1: left > bottom

2: out = up left 3: (right < bottom) ∧ (top > left)

4: out = up 5: out = up right

true false

true false

Figure 7: GBDT Result from Modeling Control Policy.

Our result reveals that the learned neural network policy
may be overfitted to the scenario because the output relies
on this specific arrangement of the obstacles. The discov-
ered rules are indeed true patterns in the data. However, it
is unclear that these rules provide satisfactory explanations
to humans. For example, humans do not find comparisons
between different axes, such as left> bottom, very intuitive.

GBDT Temporal Modeling The above approach does not
take into account (1) the temporal nature of the problem
and (2) the interactions between the controller and the en-
vironment. In this second GBDT approach, we attempt to
capture the temporal properties of the combined controller-
environment system. We construct a training dataset where
the inputs are multivariate sequences of the obstacle sensor
values, goal sensor values, policy output, and agent position,
and the target outputs are whether the sequence was pro-
duced by the final (optimal) neural network control policy or
another (suboptimal) controller that was considered but ul-
timately discarded during training. We train a GBDT model
on the temporal data and then inspect the learned rules to
gain insight into the temporal properties that distinguish be-
tween paths from the optimal and suboptimal controller.

We specify a grammar based on a simple temporal logic
as shown in Figure 8. The grammar includes temporal op-
erators globally G and eventually F ; elementwise logical
operators conjunction ∧, disjunction ∨, negation ¬; and
comparison functions that perform elementwise compari-
son of a feature sequence to precomputed constants. These
comparison functions are expressed in the grammar in the
form fop(xid, vid), which computes X[xid] op V [xid, vid],
where X[xid] is the temporal sequence of feature xid, op
is a comparison operator, and V [xid, vid] is a precomputed
lookup table that returns the vid’th decile division point of
the range of feature xid in the data.

The GBDT was trained using genetic programming (Koza
1992) to optimize each rule of the tree (Lee et al. 2018). The
resulting GBDT, which attained 99.9% accuracy, is shown
in Figure 9. The GBDT model identified three temporal
properties relevant to distinguishing between whether a se-
quence is optimal or suboptimal. The following properties
need to be simultaneously satisfied for the input sequence to
be classified as optimal: (1) At some point, action x reaches
a value that is greater than 90% of the range of action x in
the data (node 1 in Figure 9); (2) The following statement
must be false: At some point, obs sense right is greater
than 30% of the range of obs sense right in the data (node
2)(In other words, obs sense right must be globally below
30% of its range); and (3) At some point, action y is greater
than or equal to 80% of the range of action y in the data
(node 4).

In summary, the GBDT has discovered that strong right
and strong up actions combined with a weak right obstacle
sensor are correlated with the optimal policy. While these
properties hold true in the data, it did not provide a very
deep insight or satisfying explanation for the control policy.

b 7→ G(~b) | F (~b)
~b 7→ (~b ∧~b) | (~b ∨~b) | ¬~b
~b 7→ (~r < ~r) | (~r ≤ ~r) | (~r > ~r) | (~r ≥ ~r)
~b 7→ f<(xid, vid) | f≤(xid, vid)
~b 7→ f>(xid, vid) | f≥(xid, vid)
~r 7→ X[xid sens] | X[xid pos]

xid 7→ xid sens | xid pos
xid sens 7→ xid obs | xid goal
xid obs 7→ obs sens top | obs sens left
xid obs 7→ obs sens bottom | obs sens right
xid goal 7→ goal sens top | goal sens left
xid goal 7→ goal sens bottom | goal sens right
xid pos 7→ xid action | xid loc

xid action 7→ action x | action y
xid loc 7→ x | y

vid 7→ |(1 : 10)

Figure 8: GBDT Grammar for Temporal Modeling.

1: F (f>(action x, 9))

2: F (f>(obs sens right, 3)

3: label = suboptimal 4: F (f≥(action y, 8)

5: label = optimal 6: label = suboptimal

7: label = suboptimal

true

true false

true false

false

Figure 9: GBDT Result from Temporal Modeling.

Temporal Modeling using LSTMs
This approach combines temporal modeling with attribu-
tions to highlight the most salient sequential inputs. We be-
gin by training a long short-term memory (LSTM) classifier
(Hochreiter and Schmidhuber 1997) to distinguish between
input sequences produced by the final (optimal) neural net-
work controller and sequences produced by another (subop-
timal) controller considered (but ultimately discarded) dur-
ing training. Then we apply integrated gradients (Sundarara-
jan, Taly, and Yan 2017) to evaluate the importance of each
input. Because LSTM is a neural network for sequential
data, attributions highlight not only which features are im-
portant, but also at which time steps. Attributions produce
local explanations in that explanations apply to a particu-
lar example, rather than explaining global patterns over the

dataset.
Figure 10 shows an interesting attributions result that oc-

curs in many examples classified as optimal in the data. In
this example, we see a clear repeating pattern in features 7
and 8 that is highlighted by attributions as being the most
important in classifying this example as being produced by
the optimal controller. Feature 7 is the bottom goal sensor
and feature 8 is the right goal sensor. It is also observed that
the attribution assigns more importance to the latter parts of
the sequence. We investigated the highlighted values in the
data and discovered that there is an interesting phenomenon
in the data. Sequences produced by the optimal controller
reaches the goal much sooner than 70 time steps. To collect
maximum reward, the agent stays near the goal for as long
as possible. However, because a complete stop is difficult to
learn, the controller learned to cycle near the goal, and it is
this cycling that is being highlighted by the attributions. The
controller has learned the following behavior: (1) When the
goal is near and located below, move a small amount down-
wards and to the left; and (2) when the goal moves from
being detected by the bottom sensor to being detected by
the right sensor, then jump up and rightward and restart the
cycle. Indeed, the optimal controller exhibits this cycling be-
havior while the suboptimal ones do not.

While this approach using temporal modeling has demon-
strated that it can help identify interesting patterns in the
data, the algorithm merely highlights parts of the data and
does not elaborate on why those parts are important. Ulti-
mately, a human must perform additional analysis to try to
understand the relevance, which may be very challenging.

Figure 10: Attributions Result on LSTM Model.

Discussion
While several explanation algorithms have been successfully
used on supervised learning problems, direct application to
reward based controls learning is somewhat illusive. A large
part of this is due to the time-extended property of control
policies. An action taken at a particular time step may seem
sub-optimal at that particular time step but has benefits for
future time steps. This limits a lot of direct application of
supervised learning explanation as these explanations will
tend to explain the superficial benefit of the action for the
immediate time step and will likely miss the explanations of
the future benefits. Our use of grammar-Based decision trees

and temporal modeling attempt to address this issue, but they
also lead to another problem: Control policies that need to
optimize for future time steps are performing operations that
are inherently complex and are difficult to summarize with
simple explanations. In our test-domain the explanation al-
gorithms are able to expose a major flaw in the operation of
our learned neural network controller. However, it seems un-
likely that they would be able to reveal more subtle issues or
would be able to scale to more complex learned controllers.
In addition the explanations do not seem as convincing or as
useful as the explanations the same algorithms provide for
their original supervised learning domain.

Conclusion
Explaining a control algorithm based on machine learning
is difficult due to the black-box nature of machine learn-
ing algorithms and the time-extended properties of control
problems. In this paper we attempt to explain such a con-
troller used on a simple obstacle avoidance problem: a neu-
ral network trained using a Monte Carlo algorithm. We do
this by applying a number of explainability algorithms to
this problem. These algorithms look at the inputs and out-
puts of the controller and based on these values attempt to
explain what the controller is trying to do. The explanation
algorithms proved useful in revealing a potential hazard in
the controller, where it tries to head towards an obstacle and
then turn to avoid it. However beyond this flaw it was diffi-
cult to gain deep insights into these explanations.

Acknowledgments
This work was supported by the ATTRACTOR project
within NASA’s Convergent Aeronautics Solutions (CAS)
program.

References
Agogino, A., and Tumer, K. 2004. Efficient evaluation func-
tions for multi-rover systems. In The Genetic and Evolution-
ary Computation Conference, 1–12.
Agogino, A.; Stanley, K.; and Miikkulainen, R. 2000. On-
line interactive neuro-evolution. Neural Processing Letters
11:29–38.
Chandrasekaran, B.; Tanner, M. C.; and Josephson, J. R.
1989. Explaining control strategies in problem solving.
IEEE Expert 4(1):9–15.
Crites, R. H., and Barto, A. G. 1996. Improving elevator per-
formance using reinforcement learning. In Touretzky, D. S.;
Mozer, M. C.; and Hasselmo, M. E., eds., Advances in Neu-
ral Information Processing Systems - 8, 1017–1023. MIT
Press.
Floreano, D., and Mondada, F. 1994. Automatic creation of
an autonomous agent: Genetic evolution of a neural-network
driven robot. In Proc. of Conf. on Simulation of Adaptive
Behavior.
Gunning, D. Explainable artificial intelligence (xai).
Haykin, S. 1998. Neural Networks: A Comprehensive Foun-
dation. Prentice Hall PTR, 2nd edition.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Koza, J. R. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. Cam-
bridge, MA: MIT Press.
Lee, R.; Kochenderfer, M. J.; Mengshoel, O. J.; and Silber-
mann, J. 2018. Interpretable categorization of heteroge-
neous time series data. In sdm. SIAM.
Letham, B.; Rudin, C.; H. McCormick, T.; and Madigan, D.
2015. Interpretable classifiers using rules and bayesian anal-
ysis: Building a better stroke prediction model. The Annals
of Applied Statistics 9:1350–1371.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
3319–3328. JMLR. org.
Tulio Ribeiro, M.; Singh, S.; and Guestrin, C. 2016. why
should i trust you?: Explaining the predictions of any classi-
fier. 97–101.

Online Explanation Generation for Human-Robot Teaming

Mehrdad Zakershahrak, Ze Gong, Nikhillesh Sadassivam, Akkamahadevi Hanni and Yu Zhang1

Abstract— As Artificial Intelligence (AI) becomes an integral
part of our life, the development of explainable AI, embodied
in the decision-making process of an AI or robotic agent,
becomes imperative. For a robotic teammate, the ability to
generate explanations to explain its behavior is one of the
key requirements of an explainable agency. Prior work on
explanation generation focuses on supporting the reasoning
behind the robot’s behavior. These approaches, however, fail
to consider the mental workload needed to understand the
received explanation. In other words, the human teammate
is expected to understand any explanation provided, often
before the task execution, no matter how much information
is presented in the explanation. In this work, we argue that
an explanation, especially complex ones, should be made in
an online fashion during the execution, which helps spread
out the information to be explained and thus reducing the
mental workload of humans. However, a challenge here is
that the different parts of an explanation are dependent on
each other, which must be taken into account when generating
online explanations. To this end, a general formulation of online
explanation generation is presented along with three different
implementations satisfying different online properties. We base
our explanation generation method on a model reconciliation
setting introduced in our prior work. Our approaches are
evaluated both with human subjects in a standard planning
competition (IPC) domain, using NASA Task Load Index
(TLX), as well as in simulation with ten different problems
across two IPC domains.

I. INTRODUCTION

As intelligent robots become more prevalent in our lives,
the interaction of these AI agents with humans becomes
more frequent and essential. One of the most important
aspects of human-AI interaction is for the AI agent to provide
explanations to convey the reasoning behind the robot’s
decision-making [1]. An explanation provides justifications
for the agent’s intent, which helps the human maintain trust
of the robotic peer as well as a shared situation awareness
[2], [3]. Prior work on explanation generation often focuses
on supporting the motivation for the agent’s decision while
ignoring the underlying requirements of the recipient to
understand the explanation [4], [5], [6]. However, a good
explanation should be generated in a lucid fashion from the
recipient’s perspective [7].

To address this challenge, the agent should consider
the discrepancies between the human and its own model
while generating explanations. In our prior work [7], we
encapsulate such inconsistencies as model differences. An
explanation then becomes a request to the human to adjust

1Mehrdad Zakershahrak, Ze Gong, Nikhillesh Sadassivam,
Akkamahadevi Hanni and Yu Zhang are with the School of
Computing, Informatics and Decision Systems Engineering, Arizona
State University, Tempe, AZ. {mzakersh,zgong11,nsadassi,
ahanni,Yu.Zhang.442}@asu.edu

Fig. 1: The model reconciliation setting [7]. MR represents
the robot’s model and MH represents the human’s model of
expectation. Using MH , the human generates πMH , which
captures the human’s expectation of the robot. Whenever
the two plans are different, the robot should explain by
generating an explanation to reconcile the two models.

the model differences in his mind so that the robot’s behavior
would make sense in the updated model, which is used to
produce the human’s expectation of the robot. The general
decision-making process of an agent in the presence of such
model differences is termed model reconciliation [7], [8].

One remaining issue, however, is the ignorance of the
mental workload required of the human for understanding
an explanation. In most earlier work on explanation gener-
ation, the human is expected to understand any explanation
provided regardless of how much information is present
and no discussion has been provided on the process for
presenting the information. In this work, we argue that
explanations, especially complex ones, should be provided
in an online fashion, which intertwines the communication
of explanations with plan execution. In such a manner, an
online explanation requires less mental workload at any
specific point of time. One of the main challenges here,
however, is that the different parts of an explanation could be
dependent on each other, which must be taken into account
when generating online explanations. The online explanation
generation process spreads out the information to be commu-
nicated while ensuring that they do not introduce cognitive
dissonance so that the different parts of the information are
perceived in a smooth fashion.

A. Motivating Example

Let us illustrate the concept of online explanations through
a familiar situation between two friends. Mark and Emma
want to meet up to study together for an upcoming exam.
Mark is a take-it-easy person so he plans to break the review
session into two 60 minutes parts, grab lunch in between
the sub-sessions and go for a walk after lunch. On the other

hand, Mark knows that Emma is of a more focused type who
would rather keep the review in one session and get lunch
afterwards. Mark would like to keep his plan. However, had
he explained to Emma at the beginning of his plan, he
knew that Emma would have proposed to order takeouts for
lunch on the way before the review session. Instead, without
revealing his plan, he goes with Emma to the library. After
studying for 60 minutes, he then explains to Emma that he
cannot continue without energy, which makes going to lunch
the best option for both. At the same time, Mark refrained
from telling Emma (until after lunch) that he also needed a
walk since otherwise Emma would have proposed for him
to take a walk alone while she stays a bit longer for review,
and then to meet up at the lunch place.

The above example demonstrates the importance of pro-
viding an explanation in an online fashion. Mark gradually
reveals the reasoning to maintain his plan as the execution
unfolds so that it also becomes both acceptable and under-
standable to Emma, even though being subject to different
values due to model differences (e.g., Mark values lunch
break more than Emma thinks he does). The key point here
is to explain minimally and only when necessary. In this way,
the information to be conveyed is spread out throughout the
plan execution, potentially with even a reduced amount of in-
formation, so that there is less mental workload requirement
at the current step–from Emma’s perspective, the interaction
with Mark is more straightforward.

In this paper, we develop a new method for explanation
generation that intertwines explanation with plan execution.
The new form of explanation is referred to as online expla-
nation, which considers the mental workload of the receiver
of an explanation by breaking it into multiple parts that
are to be communicated at different times during the plan
execution. We implemented three different approaches for
online explanation generation, each focusing on different
“online” properties. In the first approach, our focus is on
matching the plan prefix. In the second approach, the focus is
on making the very next action understandable to the human
teammate. In the third approach, the focus is on matching
the prefix of the robot’s plan with any possible optimal
human plan. We use a model search method that ensures
that the earlier information communicated would not affect
the later parts of the explanation. This creates a desirable
experience for the recipient by significantly reducing the
mental workload. Our approaches are evaluated both with
human subjects and in simulation.

II. RELATED WORK

AI and its numerous applications have provided astound-
ing benefits in areas such as transportation, medicine, finance
and military in recent years, but AI agents are so far limited
in their ability to operate as a teammate. To be considered
a teammate, the agent must not only achieve a given task,
but also provide a level of transparency to other members of
the team [3]. One of the ways to achieve this is to enable
AI agents to be self-explanatory in their behaviors. Recently,
explainable AI paradigm [9] rises as one essential constituent

of human-AI collaboration. Explainable AI helps improve
human trust of the AI agent and maintain a shared situation
awareness by contributing to the human’s understanding of
the underlying decision-making process of the agent.

The explainable agency’s effectiveness [10] is assessed
based on its capability to model the human’s perception of
the AI agent accurately. This means that an explainable AI
agent must not only model the world, but also the other
agents’ perception of itself [11]. This model of the other
agents allows the agent to infer about their expectation
of itself. Using this model, an agent can generate legible
motions [12], explicable plans [8], [13], [14], or assistive
actions [15]. In these approaches, an agent often substi-
tutes cost optimality with a new metric that simultaneously
considers cost and explicability. Another way of using the
model is for an AI agent to signal its intention before
execution [16]. The motivation here is to use the model to
search for additional context information that would help
improve human understanding.

A third way of using this model is for the agent to
explain its behavior by generating explanations [4], [5], [6].
Similar to intention signaling, this method has the benefit
that the agent can maintain its optimal behavior. Research
along this direction has focused on generating the “right”
explanations based on the recipient’s perception model of
an explanation [7], [17]. This is useful, however, only with
the assumption that the explanation can be understood,
regardless of how much information is provided or whether
sufficient time is given–the mental workload that is required
for understanding an explanation is largely ignored.

In our prior work, we have studied how the ordering of the
information of an explanation may influence the perception
of an explanation [18]. In this work, we further argue that an
explanation must sometimes be made in an online fashion.
This is especially true for complex explanations that require a
large amount of information to be conveyed. The idea behind
online explanation generation is to provide a minimal amount
of information that is sufficient to explain part of the plan
that is of interest currently (e.g., the next action), and in such
a way intertwine explanation generation with plan execution.

III. EXPLANATION GENERATION

Our problem definition is based on the model reconcil-
iation setting defined in our prior work [7]. We provide a
brief review of the relevant concepts before defining our
problem in this work. Our problem is closely associated with
planning problems so we first provide the background here.
A planning problem is defined as a tuple (F,A, I,G) using
PDDL [19], similar to STRIPS [20]. F is the set of predicates
used to specify the state of the world and A is the set of
actions used to change the state of the world. Actions are
defined with a set of preconditions, add and delete effects.
I,G are the initial and goal state.

Definition 1 (Model Reconciliation): : A model
reconciliation is a tuple (π∗I,G, 〈MR,MH〉), where
cost(π∗I,G,M

R) = cost∗MR(I,G) and π∗I,G is the robot’s
plan to be explained.

Where cost(π∗I,G,M
R) is the cost of the plan generated

using MR and cost∗MR(I,G) is the cost of the optimal
plan based on the initial and goal state pair under MR. In
other words, the robot plan to be explained is required to
be optimal according to MR, assuming rational agents. The
model reconciliation setting also takes the human’s model
MH into account, which captures the human’s expectation
of the robot’s behavior. When the robot’s behavior to be
explained (i.e., π∗I,G) matches with the human’s expected
behavior, the models are said to be reconciled for the plan.
A figure that illustrates the model reconciliation setting is
presented in Figure 1. Explanation generation in a model
reconciliation setting means bringing two models, MH and
MR, “close enough” by updating MH such that π∗I,G,
the robot’s plan, becomes fully explainable (optimal) in the
human’s model. A mapping function was defined in [7]
to convert a planning problem into a set of features that
specifies the problem as Γ:M 7−→ S′ is a mapping function,
which transfers any planning problem (F,A, I,G) to a state
s′ in the feature space as follows:

τ(f) =

init− has− f, if f ∈ I.
goal − has− f, if f ∈ G.
a− has− precondition− f, if f ∈ pre(a), a ∈ A.

a− has− add− effect− f, if f ∈ eff+(a), a ∈ A.

a− has− del − effect− f, if f ∈ eff−(a), a ∈ A.

a− has− cost− f, if f = ca, a ∈ A.

Γ(M) = {τ(f)|∀f ∈ I ∪ G ∪
⋃
a∈A
{f ′|∀f ′ ∈ {ca} ∪ pre(a)∪

eff+(a) ∪ eff−(a)}}

In other words, the mapping function converts a planning
problem into a set of features that specifies the problem.

Definition 2 (Explanation Generation [7]): The explana-
tion generation problem is a tuple (π∗I,G, 〈MR,MH〉),
and an explanation is a set of unit feature changes to
MH such that 1) Γ(M̂H) \ Γ(MH) ⊆ Γ(MR), and 2)

cost(π∗I,G, M̂
H) − cost∗

M̂H
(I,G) < cost(π∗I,G,M

H) −
cost∗MH (I,G), where M̂H is the model after the changes.

An explanation hence reconciles two models by making
the cost difference between the human’s expected plan and
the robot’s plan smaller after the model updates.

Definition 3 (Complete Explanation [7]): Given an ex-
planation generation problem, a complete explanation is an
explanation that satisfies cost(π∗I,G, M̂H) = cost∗

M̂H
(I,G).

The robot’s plan must be optimal in the human’s model
after a complete explanation (M̂H). A minimal complete
explanation (MCE) [7] is defined as a complete explanation
that contains the minimum number of unit feature changes.

IV. ONLINE EXPLANATION GENERATION (OEG)

While the previous explanation generation approach pro-
vides a framework to generate explanations considering both
the robot’s model and the human’s model, it largely ignores
the mental workload requirement of the human for under-
standing the explanation. We introduce online explanation

generation to address this issue. The key here is to only
provide a minimal amount of information during the plan
execution to explain the part of the plan that is of interest
and not explainable.

Definition 4 (Online Explanation Generation): Given a
model reconciliation problem, an online explanation is a set
of sub-explanations (ek, tk), where ek represents the kth set
of unit features to be made (as a sub-explanation) at step tk
in the plan.

Basically, an online explanation requires only that any
actions in the robot’s plan before the kth sub-explanations
will match with that of the human’s expectation. In such
a way, the robot can split an explanation into multiple
parts, which are made in an online fashion as the plan
is being executed. We provide three different approaches
of online explanation generation based on the definition
provided, while each of these approaches focus on one aspect
of explanation generation intertwined with plan execution.
Section IV-A discusses OEG with Plan Prefix matching,
Section IV-B describes OEG with Next Action matching and
Section IV-C explains OEG with any prefix matching.

A. OEG for matching Plan Prefix (OEG-PP)

To generate the sub-explanations (i.e., {ek}) for an online
explanation, the planning process must consider how the
sequence of model changes would result in the changes of the
human’s expectations after each sub-explanation. Similar to
the search process for complete explanations [7], we convert
the problem of explanation generation to the problem of
model search in the space of possible models. The challenge
here is that the model changes may not be independent, i.e.,
future changes may render a mismatch in the previously
reconciled plan prefixes. To address this issue, it must be
ensured that the model changes after ek, i.e., ek+1:m where
m denotes the size of the set of sub-explanations, would
not change the plan prefixes in MH . This can be achieved
by searching from MR to MH to find the largest set of
model changes which ensure that the plan prefix would not
change afterwards after further sub-explanations. This search
process is illustrated in Figure 2. An OEG-PP is a set of sub-
explanations (ek, tk) such that:

∀k > 1,Prefix(π∗I,G, tk − 1) = Prefix(πH
Ek−1

, tk − 1)

Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1

s.t.⋃
i

ei = Γ(M̂H)\Γ(MH) ⊆ Γ(MR)

(1)
where Prefix(π, t) returns the prefix of a plan π up to
step tk−1. Ek represents e1:k and πH

Ek
is the optimal plan

created from MH
Ek

(MH after providing sub-explanations
e1 to ek). More specifically, the following process will be
performed recursively for each sub-explanation. First, we
continue moving along π∗I,G = (a1, a2, ..., an) as long as
the plan prefix matches with the prefix of the plan using
the human model MH . Let t = t1 be the first plan step
where they differ. Our search for the sub-explanation starts

Fig. 2: Model space search process for OEG-PP. Compared to MCE in the previous work [7], the difference is that in our
approach the search starts from the robot model and stops where the plan prefixes for the updated human model and the
robot model match, while in the previous approach the search process starts from the human model (MH). In this aspect, our
research process is more akin to MME [7]. However, since we are focusing on matching the prefixes rather than the whole
plan in one shot, our approach must run this process multiple times compared to only once in MME. While seemingly more
computationally expensive, this characteristic actually allows us to beat both MCE and MME in terms of computation since
our approaches at any time consider only a small set of changes (see results). The dotted line represents the border of the
maximum state space model modification in robot model which reconciles the two models up to where the plan execution
currently is. Maximum updates to the robot model is equivalent to minimum updates to the human model.

with MR. It finds the largest set of model changes to MR

such that the prefix of a plan using the corresponding model
(i.e., MR minus the set of changes) matches with that of
π∗I,G up to step t2 − 1. The complement set of changes
(i.e., the difference between MH and MR, minus this set
of changes) will be e1. For the next recursive step, we will
start from action t1 and the human model will be MH

E1
. To

ensure that the prefix (up to t2 − 1) will be maintained for
future steps, we directly force the later plans to be compatible
with the prefix. Since we know that an optimal plan exists
that satisfies this requirement following the search process,
this would not affect our solution for online explanation.

The recursive search algorithm for model space OEG
is presented in Algorithm 1 for finding ek given Ek−1.
To search for ek, we use a recursive model reconciliation
procedure on the model space. Given MH

Ek−1
and MR,

we start off with finding the difference between these two
models, and modify MR with respect to MH to find the
largest set of model changes that can satisfy constraints
introduced in Eq. (1). This algorithm continues until the
human’s plan matches with that of the robot’s plan.
B. OEG for matching Next Action (OEG-NA)

Throughout OEG-PP, we assume that generating expla-
nations would modify MH , and the goal of explanation
generation is to ensure that the robot and human plan have
the same prefix at any step of plan execution. However,
this is not always required since the human may not be
interested in actions that occurred. Hence, we relax earlier
than the current action the plan prefix condition, such that
the robot needs only to reconcile between MR and MH

to match the very next action in π∗I,G and πH
Ek−1

at step
tk, regardless of the earlier actions in the plan prefix. This
approach is also motivated by the fact that the human is

Algorithm 1: OEG-PP Algorithm

input : MH
Ek−1

, MR, π∗I,G and {ek−1, tk − 1}
output: Sub-explanation ek
Compute ∆(MH

Ek−1
, MR) as the difference between

the two models;
Sort ∆(MH

Ek−1
, MR) ascending based on the size of

the model changes;
Compute πH based on MH

Ek−1
with prefix set up to

tk − 1;
tk ← FirstDiff(π∗I,G, πH);
. The first plan difference between
π∗I,G and πH

LONGESTMONOTONIC(MH
Ek−1

, tk,∆)
if (π∗I,G ≡ πH) then

return {};
for ∀f ∈ Γ(MR)\Γ(MH

Ek−1
) do

. All remaining differences after
sub-explanations Ek−1

λ← Γ(MH
f) ; . create a modification

if πH
Ek−1

≡ π∗I,G then
return λ;

Create a plan πf
H using (MH

f);
if (tk ≤ FirstDiff(πf

H , π∗I,G)) then
if |λ| > λmax then

λmax ← λ;
∆(MH

Ek−1
, MR)− = λmax ;

Sort (∆(MH
Ek−1

, MR)) ascending ;
LONGESTMONOTONIC(MH

Ek−1
, tk,∆);

return λmax as ek;

known to have limited cognitive memory span [21]. In the
most limited case, the agent focuses on explaining the very
next action that is different between the most recent human
plan πH

Ek−1
and π∗I,G. Similar to Algorithm 1, We perform a

recursive model reconciliation procedure on the model space.
Compared to other two approaches, first, we perform the
search from M̂H\MH rather than MR (see Figure 2) since it
is computationally faster due to the fact that the plan prefixes
do not need to be identical and since the search procedure
is monotonic, the search result would be equivalent as if the
procedure started from MR. The other difference here is that
we do not compare the entire plan prefix. Instead, the agent
explains only the immediate next action that does not match
in the human and robot plans that, without requiring the
explanation also maintains the match between the prefixes.
In this aspect, the search process of OEG is similar to that of
minimally monotonically explanation (MME) in [7], except
that the process must be executed multiple times for OEG
due to its online fashion. In the implementations, however,
our algorithms actually combine search from MH and MR

for a better performance, given the fact that latter model
updates do not often affect the previous sub-explanations:

∀k > 1,∀tk − 1 ≤ t < tk, ak ∈ π∗I,G[t] & ak ∈ πH
Ek−1

[t]

& Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1

s.t.⋃
i

ei = Γ(M̂H)\Γ(MH) ⊆ Γ(MR)

(2)

C. OEG for matching Any Prefix (OEG-AP)

One assumption in the OEG-PP approach is that the robot
has only right plan. Subsequently, the robot’s goal is to
reconcile the human’s plan with respect to its own plan using
model space search. We relax this assumption by assuming
that there is a set of optimal plans. In such a setting, the robot
does not need to explain as long as there exists a human plan
that has the same prefix as the robot’s plan earlier than the
current action. The goal of OEG here is thus to satisfy the
following:

∃πH
Ek−1

∈ ΠH
Ek−1

∀k > 1,Prefix(π∗I,G, tk − 1) = Prefix(πH
Ek−1

, tk − 1)

Γ(MH
Ek−1

) = Γ(MH) ∪ Ek−1 (3)
where ΠH

Ek−1
is a set of optimal plans generated using

MH
Ek−1

, πH
Ek−1

is the human optimal plan generated from
MH

Ek−1
and π∗MH

is the human optimal plan generated from
the original human model (MH). A straightforward solution
to OEG-AP is to generate all human optimal plans and check
if any one of them matches with the robot’s plan (prefix).
This approach however is computationally expensive. In-
stead, we implemented a compilation approach. To check that
a plan prefix Prefix(π∗I,G, tk−1) in the robot’s plan is also a
prefix in the human’s model, we first compile the problem in
the human’s model into a new problem such that the robot’s
plan prefix would always be a prefix of the human’s plan.

If the cost of the human’s optimal plan in this new domain
model is equal to the cost of the human’s optimal plan before
the compilation, then clearly there exists an optimal plan
in the human’s model that matches the prefix. Otherwise,
we know that an explanation must be made. Hence, the key
here is to ensure that a plan prefix is always satisfied in the
compiled model.

This is not difficult to achieve. For all i ≥ 1, such
that ai, ai+1 ∈ Prefix(π∗I,G, tk − 1), where ai, ai+1 are two
consecutive actions in π∗I,G, the compilation can be achieved
by adding a predicate pi to ai as an effect, which is a
prerequisite for ai+1. ai+1, in its turn deletes pi and adds
pi+1 which is a prerequisite for ai+2, etc.

To search for ek, we again use a recursive model recon-
ciliation process on the model space, similar to Algorihm
1. Similar to IV-A, we start off with finding the differ-
ence between these two models. The main difference in
this approach is that after each model update after a sub-
explanation, the agent checks if there exists a human optimal
plan that has the same plan prefix as the robot’s plan up until
the next action using the compilation approach described
above. This check stops when such a plan does not exist
and a new sub-explanations must be identified by model
space search. This process continues until an optimal human
plan exists that matches the robot’s plan. Note however that
this does not mean that an optimal planner would necessary
return the same plan using the human’s model.

V. EVALUATION

We evaluated our approach for online explanation genera-
tion both with human subjects and in simulation for the dif-
ferent approaches introduced above and compared the results
with Minimally Complete Explanation (MCE) [7] approach.
For simulation, the goal is to see that how online explanation
is in general different from MCE in terms of the information
needed and computation time. We evaluated our approach on
ten different problems across the rover domain and barman
domain–two standard IPC domain described below. For both
human and simulation evaluations, the differences between
MH and MR are made by randomly removing preconditions
from an arbitrarily chosen set of model features. For human
subject study, the aim is to confirm the benefits of online
explanation generation. Our hypothesis is as follows:
• Online explanation generation will reduce mental work-

load and improve task performance.
We evaluated our approach with human subjects on a mod-
ified rover domain (see Sec. V-D).

A. Rover Domain

In this domain, the rover is supposedly on Mars and the
goal is to explore the space to take rock and soil samples
as well as taking images and communicate the results after
analysis to the base station via the lander. In order to take any
image, the rover must first calibrate its camera with respect
to the target. To sample rock or soil, the robot must have an
empty space in its storage. At any point of time, the rover
only has enough space to store one sample. In order to take

Problem OEG-PP OEG-NA OEG-AP MCE

Explanations Time Explanations Distance Time Explanations Distance Time Explanations Time

Rover

P1 3 (1.5) 8.89 7 (1.167) 0.4 17.929 2 (1) 0.4 6.94 3 28.91

P2 5 (1.67) 22.32 7 (1.4) 0.105 42.568 3 (1) 0.105 18.30 5 150.54

P3 6 (1.5) 18.68 8 (1.143) 0.068 21.258 3 (1) 0.068 1.64 5 176.16

P4 6 (1.5) 50.97 8 (1.33) 0.131 94.783 5 (1.25) 0.131 45.36 6 314.15

P5 5 (1.67) 54.83 8 (1.33) 0.135 106.709 3 (2) 0.135 50.36 4 272.76

Barman

P1 5 (1.25) 43.01 5 (1.25) 0.911 59.912 2 (1) 0.943 24.37 5 179.95

P2 5 (1) 36.17 5 (1) 0.995 33.032 3 (1) 0.899 9.36 5 38.89

P3 5 (1.25) 36.83 5 (1) 0.895 46.775 3 (1.5) 0.705 9.67 5 51.84

P4 5 (1.25) 78.42 5 (1) 0.838 69.016 4 (1) 0.556 20.42 5 61.86

P5 5 (1.67) 41.88 5 (1) 0.892 54.708 3 (2) 0.556 10.15 5 61.48

TABLE I: Comparison of number of generated explanations and computation time using different approaches for IPC Rover
and Barman Domains.

(a) OEG-PP (b) OEG-NA
(c) OEG-AP

Fig. 3: Plan distance [22] convergence across three different approaches between πH
Ek−1

and πR for the Rover domain
problems. The y-axis represents the distances while x-axis represents the number of Ek(sub-explanations).

multiple samples, it must drop the current sample before
taking another sample [23].

B. Barman Domain

In this domain, the robot assumes the role of a barman
whose goal is to serve a desired set of drinks using drink
dispensers, glasses and a shaker. The constraints are that the
robot can grab one object if its hand is empty, the robot can
grab one object with one hand, and before filling it with a
drink, a glass should be empty and clean [23].

C. Simulation Results

Table I shows the simulation results comparing minimally
complete explanations (MCE) withx OEG-PP, OEG-NA and
OEG-AP approaches for 5 problems in the rover domain
and 5 problems in the barman domain. While the average
number of model features of OEG (in a sub-explanation)
being shared at each instance of time is considerably lower
that MCE (every feature in the explanation is presented at
once), the total number of model features in an explanation
are the same for MCE and OEG-PP across most of the
problems. We can see that in some cases (for instance,
P3 from the Rover domain), the total number of model
features in the explanation for OEG-PP and OEG-NA is
more than that of MCE, which is expected since OEG is
focused on generating the minimal amount of information at

each time step, instead of the amount overall. The reason for
sharing more information in total in OEG-PP and OEG-NA,
when compared to MCE, lies in the dependence between the
features and the behavior of the planner (i.e., which optimal
is returned). While OEG-AP seems to have improved over
the amount of information in an explanation, it actually only
shows the advantage of considering all optimal plans instead
of the one returned by the planner.

Comparing both the OEG-NA and OEG-AP approaches
with MCE and OEG-PP, there is a remaining distance
between the robot’s plan and the human’s plan in terms of
plan action distance (also returned by an optimal planner).
The distance of OEG-NA is due to the fact that only the
immediate next action is considered. For OEG-AP, as we
explained, there is no guarantee that the plan returned using
the human’s model will be the same as the robot’s plan since
it considers all optimal human plans and only requires one
of them to match the robot’s. This is also illustrated more
clearly in Fig. 3. Furthermore, ion OEG approaches, since the
execution and explanation is intertwined, the plan distance
[22] between πH

Ek−1
and πR in our approaches gradually

moves towards 0 as shown, which suggests a “smoother”
adjustment for MH during the execution. This is expected
to have a positive effect on the human’s mental workload,
which we evaluated next.

Table I also presents the time comparison between differ-

ent approaches. For computation time, the results are col-
lected using a 2015 Mac book Pro, with 2.2 GHz Intel Core
i7 and 16 GB of memory. The results of the time comparison
suggest that OEG-PP is faster than MCE. Moreover, OEG-
NA seems the slowest while OEG-AP is the fastest since
it uses fewer model features. The performance improvement
over MCE may be surprising, thanks to combining search
from MR and MH . In our implementation, the possible
model updates are sorted ascending based on their feature
size and our algorithms start checking the ones with the
smallest changes from the robot’s side. The consistency
check is left as we proceed to the next sub-explanation and
backtracking is performed when it fails. This search process
takes advantage of the fact that latter information often does
not affect the previous sub-explanations.

D. Human Study

To test our hypothesis, we designed a human study to
compare our three approaches for online explanation gen-
eration with minimally complete explanation (MCE) [7].
Furthermore, to ensure that the performance difference is
not solely due to simply breaking information into multiple
pieces, we also implement another approach that randomly
breaks MCE during plan execution (referred to as MCE-
R). We conducted our experiment using Amazon Mechanical
Turk (MTurk) with 3D simulation. The subjects were given
an introduction to the rover domain and the task they were
supposed to help with. Each subject was given a 30-minute
limit to finish the task. Explanations were provided using
plain English language and rover actions were depicted using
GIF images from a 3D simulated scenario as the rover
executes the plan. Figure 4 shows the 3D simulated scenario
presented to the subjects. In this experiment, the human
subject acts as the rover’s commander, where the robot is
on Mars and supposed to perform a mission autonomously.
The human subject observes the rover’s plan sequentially
and is asked to determine whether the rover’s current action
is questionable or not, with explanations provided by OEG
approaches or MCEs. Each subject can only perform the task
for one setting to reduce the influence between different runs.
To observe the effect on mental workload more clearly, we
have also added a few spatial puzzles to the experiment as
a secondary task to create additional cognitive demand.

In the scenario, we deliberately remove certain information
from the domain so that the subject would create an incorrect
plan, when no explanation is given. In particular, we did
not inform them that the storage is limited, the memory
is limited, the camera must be calibrated, and the camera
must be calibrated with respect to the objective. This hidden
information introduces differences between MH and MR

in the model reconciliation setting, and hence resulting
in scenarios where explanations must be provided. In this
scenario, for example, the subject may question the action
for calibrating the camera if they were not specifically told
to consider that.

In MCE setting, the robot shares all the information at the
beginning of the task [7], while the information is randomly

broken to be communicated at different steps in MCE-R.
In each of the OEG setting, the robot uses different ap-
proaches of online explanation generation, which intertwines
the communication of explanation with the plan execution.
In particular, the four pieces of missing information are
provided to the subjects at different steps. In all settings, the
subjects were asked to determine whether the robot’s action
makes sense or not at a time. The minimally complete expla-
nations are generated based on [7] and online explanations
are generated using approaches introduced above.

At the end of the study, the subjects were provided the
NASA Task Load standard questionnaire to evaluate the
efficiency of different explanation approaches by NASA
Task Load Index (TLX) [24]. The NASA TLX is a subjec-
tive workload assessment tool to evaluate human-machine
interface systems. Mental workload is a multidimensional
variable which can be captured by different variables and
NASA TLX is one of the most frequently used subjective
measurements for capturing different aspect of mental work-
load [25]. It calculates an overall mental workload score
using a weighted average on sub-scales: mental demand,
physical demand, temporal demand, performance, effort and
frustration. Since our experiment does not involve physical
demand, we did not include the corresponding question. The
description of questions used for each category is presented
as follows:
• Mental Demand: How mentally demanding was the task?
• Temporal Demand: How hurried or rushed was the pace of

the task?
• Performance: How successful were you in accomplishing what

you were asked to do?
• Effort: How hard did you have to work to accomplish your

level of performance?
• Frustration: How insecure, discouraged, irritated, stressed, and

annoyed were you?

E. Human Study Results

We created the academic survey using Qualtrics and
recruited 150 human subjects on MTurk, 30 subjects for each
setting. To improve the quality of the responses, we set the
criteria that the worker’s HIT acceptance rate must be greater
than 98%. After sifting out invalid responses (i.e., failing to
identify the two purposely inserted random actions), we had
94 valid responses in total: 19 for each of MCE-R and MCE,
20 for OEG-PP, and 18 for each of OEG-NA and OEG-AP.
The age range of subjects was between 18 and 70, and 29.8%
of the subjects were female.

We examined how well the human subjects understand the
robot’s plan given the different explanations, and compared
the distances across the five different settings. We compute
the distance between the robot’s plan and the human’s ex-
pected plan by the ratio between the number of questionable
actions and the total number of actions in a plan. The lower
the distance value, the closer the human’s plan is to the
robot’s plan. This metric intuitively captures how much the
human subject understands the robot’s plan. We calculated
the averaged results of each settings over all of the subjects
participated in that setting, using subjective questions from

(a) The blue rover moves between waypoints (b) The blue rover takes a picture of one of the objectives

Fig. 4: The 3D visualization of the modified IPC rover domain problem provided to the human subjects. The rovers must
together take pictures of targets, collect rock and soil samples, and transmit them to the lander after analysis. The subject
views the actions of the rovers via GIF images. (a) and (b) shows the begin and end of an action in which one of the rover
takes an image of a target at the bottom.

(a)

(b) (c)

Fig. 5: (a) Comparison of the results of all of TLX categories
for the five settings (b) Accuracy of action classification (c)
Number of questionable actions

NASA TLX and objective performance measures such as the
number of questionable actions and the accuracy of action
classification. Results are shown in Figure 5.

The results overall show that OEG approaches are able
to better reduce the human’s mental workload than MCE
approaches. This is backed up by the fact that OEG ap-
proaches resulted in better performance in almost all NASA

TLX measures. Due to intertwining the explanation pro-
cess with the plan execution, the OEG approaches create
more temporal demand according to the experiment, which
is expected. Figure 5 presents both objective performance
measures, and subjective results of the human study amongst
the 5 TLX categories. First, the number of questionable
actions are significantly lower among OEG approaches when
comparing to the MCEs. This indicates that the subjects
had more trust towards robots in the OEG cases. Moreover,
the accuracy of identifying the correct actions (questionable
vs. non-questionable) among OEG approaches are higher.
Between the three approaches, OEG-AP has the least number
of questionable actions and the most accuracy.

We have also presented the p-value for the mental load
based on the subjective measures in Table 6 (with weights 1
for all measures ranging from 0 to 100). The results indicate
a statistical significant difference between OEG approaches
and MCEs for the mental workload in a pairwise comparison.
The overall p-value across five categories is 0.0068 between
OEGs (as a group) and MCEs (as a group).

We also did some time analysis. The average overall time
taken to accomplish the task for each of the categories is as
follows: OEG-NA (567.44s) < OEG-AP (629.56s) < MCE-
R (678.98s) < MCE (763.47s) < OEG-PP (775.65s), al-
though we did not see a statistically significant difference due
to large variances. The accuracy of the secondary task is also
not significantly different between the various approaches.

VI. CONCLUSION

In this paper, we introduced a novel approach for expla-
nation generation to reduce the mental workload needed for
the human to interpret the explanations, throughout a human-
robot interaction scheme. The key idea here is to break down
a complex explanation into smaller parts and convey them in
an online fashion, while intertwined with the plan execution.
We take a step further from our prior work by considering
not only providing the correct explanations, but also the ex-
planations that are easily understandable. We provided three
different approaches each of which focuses on one aspect
of explanation generation weaved in plan execution. This

Fig. 6: p-values across different approaches on the mental
workload, which is the sum of subjective measures (with
weights 1).

is an important step toward achieving explainable AI. We
evaluated our approaches using both simulation and human
subjects. Results showed that our approaches achieved better
task performance while reducing the mental workload.

ACKNOWLEDGMENT

This research is supported in part by the NSF grant IIS-
1844524, the NASA grant NNX17AD06G, and the AFOSR
grant FA9550-18-1-0067.

REFERENCES

[1] T. Lombrozo, “The structure and function of explanations,” Trends in
cognitive sciences, vol. 10, no. 10, pp. 464–470, 2006.

[2] M. R. Endsley, “Design and evaluation for situation awareness en-
hancement,” in Proceedings of the Human Factors Society annual
meeting, vol. 32. SAGE Publications Sage CA: Los Angeles, CA,
1988, pp. 97–101.

[3] N. J. Cooke, “Team cognition as interaction,” Current directions in
psychological science, vol. 24, no. 6, pp. 415–419, 2015.

[4] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can be
found,” in ICAPS, 2010.

[5] M. Hanheide, M. Göbelbecker, G. S. Horn, A. Pronobis, K. Sjöö,
A. Aydemir, P. Jensfelt, C. Gretton, R. Dearden, M. Janicek et al.,
“Robot task planning and explanation in open and uncertain worlds,”
Artificial Intelligence, vol. 247, pp. 119–150, 2017.

[6] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “Preferred explanations:
Theory and generation via planning,” in Twenty-Fifth AAAI Conference
on Artificial Intelligence, 2011.

[7] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan
explanations as model reconciliation: Moving beyond explanation as
soliloquy,” arXiv preprint arXiv:1701.08317, 2017.

[8] Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo,
and S. Kambhampati, “Plan explicability and predictability for robot
task planning,” in ICRA. IEEE, 2017, pp. 1313–1320.

[9] D. Gunning, “Explainable artificial intelligence (xai),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, 2017.

[10] P. Langley, B. Meadows, M. Sridharan, and D. Choi, “Explainable
agency for intelligent autonomous systems,” in Twenty-Ninth IAAI
Conference, 2017.

[11] T. Chakraborti, S. Kambhampati, M. Scheutz, and Y. Zhang,
“Ai challenges in human-robot cognitive teaming,” arXiv preprint
arXiv:1707.04775, 2017.

[12] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and
predictability of robot motion,” in Proceedings of the 8th ACM/IEEE
international conference on Human-robot interaction. IEEE Press,
2013, pp. 301–308.

[13] M. Zakershahrak, A. Sonawane, Z. Gong, and Y. Zhang, “Interactive
plan explicability in human-robot teaming,” in RO-MAN. IEEE, 2018,
pp. 1012–1017.

[14] M. Fox, D. Long, and D. Magazzeni, “Explainable planning,” arXiv
preprint arXiv:1709.10256, 2017.

[15] S. Reddy, A. Dragan, and S. Levine, “Where do you think you’re
going?: Inferring beliefs about dynamics from behavior,” in NeurIPS,
2018, pp. 1461–1472.

[16] Z. Gong and Y. Zhang, “Robot signaling its intentions in human-robot
teaming,” in HRI Workshop on Explainable Robotic Systems, 2018.

[17] T. Miller, “Explanation in artificial intelligence: Insights from the
social sciences,” Artificial Intelligence, 2018.

[18] Y. Zhang and M. Zakershahrak, “Progressive explanation generation
for human-robot teaming,” arXiv preprint arXiv:1902.00604, 2019.

[19] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[20] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[21] F. Paas, A. Renkl, and J. Sweller, “Cognitive load theory and in-
structional design: Recent developments,” Educational psychologist,
vol. 38, no. 1, pp. 1–4, 2003.

[22] A. Kulkarni, Y. Zha, T. Chakraborti, S. G. Vadlamudi, Y. Zhang,
and S. Kambhampati, “Explicablility as minimizing distance from
expected behavior,” arXiv preprint arXiv:1611.05497, 2016.

[23] IPC, “Competition domains for international planning commit-
tee,” http://www.plg.inf.uc3m.es/ipc2011-learning/Domains.html, Jul.
2019.

[24] NASA, “Nasa task load index,” https://humansystems.arc.nasa.gov/
groups/TLX/, Feb. 2019.

[25] P. S. Tsang and V. L. Velazquez, “Diagnosticity and multidimensional
subjective workload ratings,” Ergonomics, vol. 39, no. 3, pp. 358–381,
1996.

http://www.plg.inf.uc3m.es/ipc2011-learning/Domains.html
https://humansystems.arc.nasa.gov/groups/TLX/
https://humansystems.arc.nasa.gov/groups/TLX/

Feature-directed Active Learning for Learning User Preferences

Sriram Gopalakrishnan, Utkarsh Soni, Subbarao Kambhampati
Arizona State University

Abstract

Learning preferences of users over plan traces can be a chal-
lenging task given a large number of features and limited
queries that we can ask a single user. Additionally, the pref-
erence function itself can be quite convoluted and non-linear.
Our approach uses feature-directed active learning to gather
the necessary information about plan trace preferences. This
data is used to train a simple feedforward neural network to
learn preferences over the sequential data. We evaluate the
impact of active learning on the number of traces that are
needed to train a model that is accurate and interpretable. This
evaluation is done by comparing the aforementioned feedfor-
ward network to a more complex neural network model that
uses LSTMs and is trained with a larger dataset without active
learning.

Introduction
When we have a human-in-the-loop during planning, learn-
ing that person’s preferences over plan traces becomes an
important problem. These preferences can be used to choose
a plan from amongst a set of plans that are comparable by the
planner’s cost metrics. Such a plan would naturally be more
desired by the human. The user may not like to constantly
dictate their preferences, and may not always be in the loop
during execution. Thus, it is important for the user’s prefer-
ence function to be learned well, and for the user to be able
to verify them. For verification, there ought to be a way to
interpret how the model’s decisions were made, and verify
how faithful the learned model is to the user’s preferences.

A user’s preferences function may be quite complex with
dependencies over different subsets of features. The utility
of some features maybe non-linear as well. Such a prefer-
ence function may require a fair amount of information to
approximate. We cannot expect a single user to give feed-
back over a large set of traces to get the relevant informa-
tion. So Active learning, with a sufficiently expressive user
interface for feedback, is essential to minimize queries and
redundant information.

In this work, our objective was to model the user’s pref-
erences over plan traces. There do exist techniques that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

efficiently represent and reason about preference relation-
ships. CP-nets (Boutilier et al. 2004) and Generalized ad-
ditive independence(Braziunas and Boutilier 2006) models
are typically used to represent preferences over sets of vari-
ables without consideration to the order in which they ap-
pear. While these models can be adapted to handle sequen-
tial data, they are not intended for it. LTL rules, however,
can capture trajectory preferences very well and are used in
PDDL 3.0 (Gerevini and Long 2005), and LPP (Bienvenu,
Fritz, and McIlraith 2006). However, it can be very hard for
a user to express their preferences in this form. We discuss
existing approaches in more detail and the differences with
respect to our work under the related work section.

In our approach to learning preferences, we want to effi-
ciently identify the relevant features and the degree to which
they affect the preference score of a plan. We thus employ
a feature-directed active learning approach that specifically
picks plan traces that are most informative about the fea-
ture’s effects on preference. After active learning, we encode
a plan trace in terms of the relevant features it contains. We
gather a set of training data from active learning, along with
the user’s preference score to help train a simple Neural Net-
work (NN) that we call the FeatureNN model. We use a Neu-
ral Network as they can approximate complex functions to a
good degree. Our approach is in one way, related to Gener-
alized Additive Independence in that we try to learn a utility
function over pertinent features, but we do not explicitly de-
fine or restrict the form of any utility functions. Rather a
simple one hidden-layer feed-forward neural network learns
the functions, dependencies, and relative weights over the
relevant features. The FeatureNN then predicts a preference
score for each plan reflecting the user’s preferences. We also
compare the performance of the FeatureNN to another Se-
quenceNN model that processes sequential data using an
LSTM(Schmidhuber and Hochreiter 1997) module. The Se-
quenceNN is not trained with data from active learning, but
with a larger dataset of traces with ratings. This is to evaluate
how efficient our active learning approach is with respect to
the number of traces. Specifically, we compare the number
of traces required by SequenceNN and FeatureNN for the
same accuracy and interpretability.

Neural networks, unlike linear functions, are not as easy

to interpret. Even simple NN with a single hidden layer can
be a challenge. We help the user interpret the decisions of
the neural network by showing how the preference score is
affected by removing different features of a plan trace. This
is similar to using Saliency Maps (Simonyan, Vedaldi, and
Zisserman 2013) in images to explain what parts of the im-
age contributed to the classification. In this way, we can ex-
plain to the user what plan features contributed to the pref-
erence value and by how much. The difference in prefer-
ence score should correspond to the user’s expectations as
per their preference model. The more similar the effect of
changes are to the user’s preferences, the more interpretable
the NN model is to the user as it approximates well their
own preference function. Such a method of explaining a de-
cision(score) is also related to explaining using counterfac-
tuals (Miller 2018). Here the counterfactual is the plan trace
without a specific feature. Additionally, when the specific
features used to compute preferences comes from the user’s
feedback (during active learning), this interpretability is ob-
viously improved.

We present our work by first defining the problem be-
fore delving into the methodology of our approach. In the
Methodology section, we discuss the domain used, the user
preference model, and the feature-directed active learning
process. We also discuss the two neural network models
used to learn the preference model, viz. the FeatureNN and
the SequenceNN models. Then we present our experimental
results in which we compare the two models with respect to
their accuracy in predicting the preference score, as well as
interpretability. Lastly, we discuss the results and possible
extensions to the work.

Problem Definition
Given a Domain D, with a set of features F , and a planner
P , the problem is to learn the preference function Fp() that
captures the user’s preference model Up() and scores traces
accordingly. The types of preferences we learn in this work
are a function of the feature set F of the domain and not
hidden variables or action costs. The user U is available to
rate a plan trace on its preference, and annotate what features
contributed positively or negatively to the rating. Features
can be categorical or cardinal(count), and involve sequences.

Plans are rated between [0, 1] with higher values indicat-
ing a greater preference. If there are no features in the plan
that either contributed positively or negatively to the prefer-
ence, then the preference score is 0.5.

An equivalent problem formulation assumes that instead
of a domain D and planner P, we are given as input a large
enough set of plan traces B (backlog of traces) over a rele-
vant set of initial and goal states. We assume that this set of
plans covers the space of possible preferences that the user
might have.

Methodology
For our experiments, we chose to use gridworld with fea-
tures that any human can relate to. We chose gridworld as it
is easy to quickly generate many diverse plans that cover the
range of features.

Given the domain and a task, we go through r rounds of
active learning. Each round comprises of rt traces. Both r
and rt are hyperparameters. For our experiments, we set the
number of rounds at r = 3. After acquiring the data, we train
the NN model and test it on a hidden set of traces. We now
go over different parts of our methodology in detail.

Domain
The objective in our gridworld domain, which we call
Journey −World, is to travel from home to the campsite
which is shown in the grid in Figure 1(a). Each step of a plan
corresponds to a cell of the grid. While some cells are empty,
there a lot of cells that have features. These features can
be eateries(like a coffee shop, restaurant), landmarks(natural
history museum) or activities(visiting the library, watching a
movie). The user can move through any of these states be-
fore reaching the campsite. A majority of the cells also con-
tain landscapes like mountains, lake, sea or industries. The
user is not allowed to move through Landscape cells. Mov-
ing through cells adjacent to Landscape cells corresponds
to seeing the landscape along the journey. For example, if
a step in the plan goes through a cell which is adjacent to a
lake, this corresponds to the plan going through a state where
the user passed by a lake.

All non-landscape features (like coffee, donut) are binary
features in a plan trace i.e. the user has either visited one or
not. On the other hand, the landscape features are cardinal,
i.e. we count the number of such landscape features in the
plan trace. We assume that the count of cardinal features can
make a difference in the preference score. In total, there are
13 features in Journey −World.

We had designed Journey − World with simple and
commonly understood features to make it easier for subse-
quent human-studies. We assume people will have prefer-
ences over these features.

User Preference Model
For our current experiments, we chose to use a completely
defined user preference model to represent the user. This
made it easier for us to test and debug our methodology. In
future extensions of this work, we will include evaluations
with human trials. The user’s preference model is defined as
follows

P (trace) =

0.5 + 0.1 ∗ (C)− 0.3 ∗ (D) + 0.1 ∗ n(L)
+0.1 ∗ n(I) if not(C and D)
0.5 + 0.3 ∗ CD + 0.1 ∗ n(L) + 0.1 ∗ n(I)

if (C and D)

where n(x) = min(x, 2) , C ∈ {0, 1}, D ∈ {0, 1}
and L, I ∈ N

C is a binary variable that is 1 when the plan trace has a cof-
fee. D is also a binary variable and represents a Donut. CD
represents a binary variable set to true when the plan trace
a coffee and a donut. When CD is true, C and D are false
and this dependency affects the preference score computa-
tion as shown in the preceding equation. L and I represent

(a) Problem domain (b) Rated and annotated plan trace

Figure 1: (a) Problem domain. The task is to go from home(lower left corner) to the camp site(upper right corner) (b) A plan
trace that has been rated 0.8 by the user. The user has also provided annotations: green for liked features, and red for disliked
features.

the number of lake and industry regions respectively. These
are cardinal features, and the preference of the plan increases
based on their count, up to 2, and then stops increasing. The
function itself, while simple to understand, is non-linear and
hidden underneath a large hypothesis space of functions that
could be learned in the domain, over a larger set of features
(13 in total for the Journey −World domain). In our ex-
periments, we programmed a separate module to rate and
annotate plan traces based on an input preference function
like the one described previously. This synthetic human is
what rates and annotates in the active learning process that
we will describe shortly. Using a synthetic human helped
speed up the testing and debugging process, and gives us a
baseline noiseless scenario to test against.

User Interface

The current user interface(Figure 1(a)) for Journey −
World displays the entire grid. Icons are used to show the
features present in cells. The plans for each round of active
learning are then shown one at a time. The plan steps are
visualized as a line going from the home to the campsite.
The user has to input a rating to indicate their preference
for the plan based on the features that are visited. They can
also annotate features of the plan that they like(green) or dis-
like(red) as shown in Figure 1(b). The user can click on the
Next P lan button to then move on to the next plan. The
interface automatically switches to the next round of Active
Learning when the current round’s plans have all been rated.

Feature-Directed Active Learning
In our active learning process, we go through multiple
(r) rounds of feedback. Each successive round utilizes the
knowledge from previous rounds to select the most informa-
tive queries. In the first round, the user is shown the most
diverse set of plan trajectories that were generated for the
domain. We choose diverse plans because in the first round
we do not have any knowledge of what features might affect
the user’s preference and hence, we want to cover the fea-
ture space as much as possible in rt = 30 traces. In order
to get the required diverse plan set, we first generate a large
number of plan traces(10000 plans) over a user specified set
of initial and goal states that we refer to as the backlog of
plans, B. In our current experiments we only have one ini-
tial and one goal state. We are easily able to generate such
a large backlog of plans because it is a type of gridworld
domain. We did not want the computational cost of diverse
plan generation to hamper the work. This is a computational
cost that needs to be considered when working with other
domains. The plans generated cover the entire feature space
of the Journey − World domain. We then select the 30
most diverse plans within the set of backlog plans for the
first round. We will now discuss how this is determined.

The diversity score between any two plans pa and pb is
denoted by d(pa, pb). The diversity is based on the sum of
feature count differences for features f ∈ F that are present
pa and pb. For a particular feature f , we compute the feature
count difference f∆. Rather than use the difference in count
per feature, we use a geometric series sum as computed in
Equation 1. The first count in the difference contributes 1,

the second count contributes a 0.5, the third contributes 0.25
and so forth. So the count difference for a single feature con-
tributes to at most 2 to the diversity computation. This avoids
any single feature from dominating the diversity computa-
tion.

The diversity between two traces is computed as the av-
erage fE∆(Equation 2) over all the features in the domain.
Finally, we calculate the backlog-diversity dB for a plan p
using equation 3. The backlog-diversity is the average pair-
wise diversity over every other plan in the backlog. Using
this diversity score, we select the top rt plans (rt = 30 in
our experiments) for the user feedback.

fE∆ =
(1− rf∆)

1− r
(1)

d(pa, pb) =
∑
f∈F

fE∆/|F | (2)

dB(p) =

∑
p′∈B d(p, p′)

|B|
(3)

After the first round of diverse plans, we then make use of
the ratings and annotations provided by the user in the first
round to generate the most informative plan traces for the
subsequent rounds. Given our acquired knowledge of rel-
evant features from the previous round, our objective now
is to figure out the effects and dependencies between these
features. We also want to select traces for the next round
that are more likely to be rated either significantly higher or
lower. This region of data is typically harder to get as we
expect most data to be closer to the average. In order to es-
timate which plan traces would be either most preferred or
least preferred, we use a fast weak predictor that predicts
the rating of any arbitrary plan p given prior knowledge. We
need the predictor to be fast as we have to give traces or
queries for the next round in a short amount of time.

The weak predictor estimates a value for each feature
based on the prior annotated data. It can then estimate the
score of an unrated plan as just the sum of the features
present in it. The value of each feature is scored using a
quick and simple method. First, for each scored plan trace
p with rating rp, the feature f is given a score fp

score for that
plan by equation 4. Then the feature’s score, fscore, is com-
puted as the average fp

score over all plans that the feature
appears in. Then to predict the score for an unrated plan,
the weak predictor assigns a score predict(p) which is the
sum of fscore for all features present in the plan.

fp
score =

{
rp if f annotated as ”liked”
−(1− rp) if f annotated as ”disliked”

(4)
In addition wanting plans that are likely to be rated much

higher or much lower, we also want the next round traces
to have two more properties. We still want to include some
diversity in the plan traces with respect to the overall back-
log of traces to uncover features that we might have missed
in the first round. Additionally, we want to maintain some
similarity in traces between the rounds. We think that the

similarity between plans reduces the cognitive load on the
user as they need not parse wholly different traces. Given a
plan p, we denote its similarity to the already scored traces
as S(p).

Finally, we assign a combined weighted score of pc to all
the plans in the backlog given by equation 5. The top rt = 30
plans are then picked for the next round, and in this way the
active learning proceeds for r rounds. For our experiments r
is 3 rounds.

pc = w1 ∗ predict(p) + w2 ∗ dB(p) + w3 ∗ S(p) (5)

Preference Learning using Neural Networks
For learning the preference function we used two models,
SequenceNN model and FeatureNN model.

The SequenceNN model uses an LSTM module in it. We
considered an LSTM based model as they are well suited to
learning patterns overs sequential data. The input plan trace
was encoded such that each step was an encoding over the
features of the cell visited at that step. There are 13 features
in total, and so each step is a 13-dimensional vector. We do
not provide or restrict the input to only the features that the
user annotated during active learning for the SequenceNN
model. We wanted to test how easily the model could still
figure out the relevant features and learn the preference func-
tion well.

The training data for the SequenceNN model was a set of
rated plan traces. We varied the number of traces given from
as small as 30 to 12,000 in increasingly larger step sizes. A
plan trace would be a N × 13 array where N is the plan
length. We trained the model for 10 epochs with a batch
size of 8, a learning rate of 0.01 and using stochastic gra-
dient descent. The SequenceNN module in our model has
16 memory cells. After processing the plan trace through
the LSTM module, we concatenate the output vector and
memory nodes of the LSTM module and pass it through a
single fully connected hidden layer, followed by the output
layer which outputs the preference score between [0,1]. The
model summary is in Figure 2. The idea is that the LSTM
module output and memory, at the end of processing the se-
quence, will have the necessary information related to the
sequence for predicting the score.

Figure 2: LSTM Model for Preferences

To test if any variant of the SequenceNN model could
learn the relevant information better, we also tried varying
the size of the model (number of parameters) to make it more
powerful. We varied the model from 16 to 64 weights in the

memory layer. Results are in the Evaluation and Analysis
section.

For the FeatureNN model, the input was an encoding of
the plan trace that only comprised of the features the user
annotated as relevant during active learning. The entire plan
trace was summarized into one encoded vector. For exam-
ple, in the user preference model in our experiments, only 5
features matter to the user. We determine what these features
are through active learning, and then defined our FeatureNN
model accordingly to take a 5-dimensional vector as input.
For example, if a plan trace had a step with coffee and steps
that passed by 3 lakes, then the values at the corresponding
indices are set to 1, and 3 respectively. Note that since cof-
fee is a binary feature, even if two coffee steps were in the
plan, it’s value in the encoding is only either 1 or 0. As for
the model description of FeatureNN, it was a simple fully
connected neural net with one hidden layer of 4 dimensions
and one output layer. The model summary is in Figure 3.
Note that 4 dimensions or nodes for the hidden layer is not
a magic number, and would need to be larger if there were
more features. We reduced the number of dimensions for
the hidden layer until the results were measurably worse. To
train the FeatureNN model we vary the number of traces per
round rt from 5 to 50 traces for r = 3 rounds. Since the
dataset size is very small (smallest is 15 traces), we create
200 duplicates of the data points uniformly and train for 10
epochs. We also shuffle the data and train with a batch size
of 8, a learning rate of 0.01, and using stochastic gradient
descent.

Figure 3: Simple NN Model for Preferences

Both models were tested on an unused test set of 1000
traces for accuracy and interpretability.

Interpretability of the Preference Model
A user can interpret a Neural Network’s behavior through
analyzing what features are salient to its decision, and by
how much. This can be analyzed by adding or removing fea-
tures and seeing the resultant effect on the predicted score.
When done over a set of different traces, the user can intuit
what mattered and how much. With this in mind, we com-
pute a measure of interpretability we call the Attribution Er-
ror AE. The AE for a feature f of a Plan p is computed as
follows:

AE(p, f) = |(Up(Plan)− Up(Plan− f))−
(Fp(Plan)− Fp(Plan− f))| (6)

where Up() is the preference function of the user (true model
of preferences) and Fp() is the learned preference function.
AE is simply the difference in the effect of the feature on
the preference scores. The overall AE for each test plan p ,
AE(p), is the average of AE(p, f) for all f present in p. We
compute the AE score for the test set as the average over
only the top 10% of AE(p) errors. We do this because neu-
ral networks can sometimes have enough capacity to mem-
orize many cases and increase accuracy. So it can predict
the correct preference score of both of the original trace and
modified trace (with dropped feature) by the memory of very
similar traces. It would then seem like it’s preference func-
tion predicts the same way as the ground-truth preference
function, but it maybe using unrelated features. Therefore, it
is in the failure cases that we get a true measure of its gen-
eralization and how faithful it is to the true model of pref-
erences. That is why we use the average over the top 10%
of AE(p) errors. These failure cases could correspond to the
cases when a rare or unseen pattern of features are input, and
thus not memorized.

Evaluation and Analysis
Evaluation of LSTM model
When varying the number of training input traces given to
the SequenceNN model, we observed that the accuracy im-
proved (error decreased) as expected(Figure 4(a)). Surpris-
ingly, even with 30 traces, it was able to predict with an error
of 2.5% over the test set of unseen 1000 traces. We attribute
this to the fact that there are enough simple correlations with
other features that can predict the score well for the prefer-
ence function that we tested with. This is evidenced by the
fact that the interpretability measure (Attribution Error) is
very low for 30 traces(Figure 5 (a)); The attribution error
was greater than 0.3 and the value range of AE is [0,1]. Ad-
ditionally, we give the most diverse N traces for each train-
ing set size to the SequenceNN model. Diverse traces are
more likely to contain relevant information.

The interpretability of the LSTM model was not impres-
sive. The attribution error did decrease over the range of
training set sizes, but only as low as 0.09 as shown in Fig-
ure 5(a). Given that the preference scores are between [0, 1],
this would correspond to a 9 percent error after 7500 rated
traces. Needless to say, it is unreasonable to expect a single
human to rate 7500 traces.

We also tried varying the size of the SequenceNN model
from 16 to 64 dimensions. This improved accuracy by a mi-
nuscule amount (order of 1e−4), and interpretability did not
improve.

Evaluation of Feature-NN model
The performance of the FeatureNN model was significantly
better both in accuracy(lower error) and interpretability than
the SequenceNN model as seen in Figure 5. This should
come as no surprise since we restrict the input space based
on user feedback (knowledge) on relevant features. This also
restricts the hypothesis space of functions that the simple
feed-forward network could search over. We think this will
make it more likely that the NN will find a good and faithful

(a) Error using rated traces and a LSTM based learner (b) Error with feature-directed active learning and a simple neu-
ral network

Figure 4: Comparison of accuracy

(a) Attribution error using rated traces and a LSTM based learner (b) Attribution error with feature-directed active learning and a
simple neural network

Figure 5: Comparison of attribution error

approximation function to the true preference function. This
is as opposed to discovering predictive but incorrect correla-
tions.

What is interesting to note is that the interpretability, as
measured by the AE error drops to as little as 2.5 % in as
little as 60 traces (20 traces per round over 3 rounds) for
FeatureNN model as shown in Figure 5b. It drops below 2
% with 150 traces.

The FeatureNN model with 90 traces is as accurate as the
SequenceNN with 7500 traces in our problem, with 8% less
Attribution Error (more interpretable). While we expected
FeatureNN to be better, we did not expect such a large dif-
ference in efficiency.

Analysis and Discussion
Even with as little as 13 features and a relatively uncompli-
cated preference function, a sufficiently powerful Sequen-
ceNN model did not find the underlying preference function.
Instead, it found correlations that predicted the preference
score to a very high level of accuracy. This, unfortunately,
makes the model suffer in interpretability.

As the number of features increases, the hypothesis space
of a NN will increase significantly. This makes it much more
likely for any NN to find spurious correlations, and suffer
in interpretability. So active learning and using a simpler
NN becomes very important for learning preferences in plan
traces.

As for prior feature knowledge, we assumed knowledge
about what features were categorical (binary in our experi-
ments) and what features were cardinal. Rather than assume
this knowledge, we can get this from the user as well, and
reduce the assumptions about the domain features. Alterna-
tively, we could have just encoded all features as cardinal
features, and let the neural network determine what features
were categorical. While this is certainly possible, we think
it better to get this knowledge from the user and encode the
plan trace based on this knowledge. This makes the job of
the neural network easier, and less likely to learn spurious
correlations.

In our current encoding of features in FeatureNN model
and our experiments, we have not included a preference de-
pendency that considers the number of steps between fea-

tures. For example, I would like to have a donut within 3
plan steps after having a coffee. This omission was not in-
tentional. One can easily encode such a sequential feature
as a variable as well. The number of steps between the two
(state) features becomes a cardinal variable to represents this
sequential feature.

Related Work
Two well known paradigms for learning, representing and
reasoning over preferences are CP-nets and Generalized ad-
ditive independence (and their variants). Both of them were
intended for preferences over outcomes. Each outcome can
be comprised of many parts(decisions). One can think of
each decision as choosing a value for a variable. The user
would have preferences over the possible outcomes, or there
maybe a utility (value) associated to each outcome. In CP-
nets (Boutilier et al. 2004), the decisions or variables are rep-
resented in a graph, and there exists dependencies over vari-
ables. The preferences of a variable’s values are affected by
the value of the parent variables. The CP in CP-nets stands
for Ceteris Paribus or ”all else being equal”. Here, the all
else refers to the parents of the node, and when they are
equal, then a particular set of preference orderings for the
child variable’s values hold. The knowledge of the depen-
dence graph is either known apriori, or can be queried from
the user. Once the hierarchy of dependence is known, the
user is then queried about preferences at each node. For CP-
nets to be used in plan trace preferences, we would have to
ask the user what the dependencies are. Then we would have
to ask the user for their relative preferences over features,
given fixed parent feature values. Note that the variables for
plan preferences may also have to incorporate information
about order. So there are significantly more variables (fea-
tures) to consider in sequential data versus unordered data.
We think querying for such knowledge is very demanding,
and not natural for preferences over plan traces.

We believe it is more natural for the user to specify the
relevant conditional dependencies over features while anno-
tating a plan trace. Additionally, we think it easier to give
a preference value for the plan trace rather than relative
preference orderings over the features in the domain. The
features could include sequential dependencies or position-
dependent features. We think it would be hard for the user to
be able to describe sequential features and the relative order-
ing over them. Lastly, CP-nets do not compute utility values
and some outcomes can be incomparable for a particular net-
work of dependencies. In our problem, we would like a total
order over the plans, to select the most preferred plan. So it
helps to have a utility/preference value for every plan trace.

On the other hand, GAI (Braziunas and Boutilier 2006)
models do provide a single utility value for a set of features.
As stated in their work, they provide an additive decomposi-
tion of a utility function (into sub-utility functions) in situa-
tions where single attributes are not additively independent,
but (possibly overlapping) subsets of attributes are. Since
the subsets of attributes for the different sub-utility functions
can overlap, one must query either with only global queries
or a combination of local queries (over the subsets of fea-
tures) with global queries to calibrate (as was done in the

GAI work) (Braziunas and Boutilier 2006)(p. 3). To learn a
GAI with active learning from a single user, there are one
of two methods. We could make assumptions about what
subsets of variables are part of each sub-utility function, and
what those functions are, or the user would need to know and
give us this information. We think this is a very difficult task
for the user. In our approach, we only do full trace queries
and ask for annotations and preference ratings. We think it is
more natural to ask the user for their overall rating of a plan,
rather than how much each subset of features affected the
rating. The neural network then handles the job of learning
the preference function over the user-specified features (and
any dependencies).

The other formalism for specifying preferences are LTL
rules (Huth and Ryan 2004) (p.175), which allow the user
to specify sequential patterns. Expecting the user to be able
to specify LTL rules might be unreasonable. The user would
also have to give utilities or preference orderings over the
specified LTL rules. One can interpret our interface as ex-
tracting a subset of simple LTL rules (through annotations)
which are present in a plan trace. The user gives a rating to
the trace, as well as what features (LTL rules) were good
or bad. Extending the LTL analogy, our encoding of a plan
trace can be seen as a vector of the relevant LTL rules. The
index corresponding to an LTL rule is set to 1 if the rule is
satisfied in the plan trace. However, recall that we also al-
low cardinal features (counts) in our encoding, and not just
binary variables. Our interface and learning framework does
not handle the entire gamut of possible LTL rules. We are
working on extending the types of sequential preferences
supported, while keeping the interface intuitive and expres-
sive.

Conclusion and Future Work
In our approach, we use feature-directed Active Learning
complemented with an intuitive and expressive user inter-
face to learn the user’s preference function efficiently. The
traces obtained during active learning are rated and anno-
tated by the user. These traces are encoded as a vector over
the features that the user indicated as relevant to their pref-
erences. The feature vectors are used to train a simple feed-
forward Neural Network to learn the preference function.
We show that the SimpleNN neural network is more accurate
and interpretable with fewer, more informative plan traces
as compared to the LSTM based SequenceNN model. The
latter was trained with a larger dataset of rated plan traces
without active learning.

Our current experiments use a user preference function
over only a few variables. It is important to see how ef-
ficiently our framework learns a more complex preference
function. Moreover, the current preference function is com-
pletely deterministic as it provides consistent annotation and
rating to the plan trace. A human, however, might not behave
in a consistent manner. We will test with a noisy or proba-
bilistic preference model in future work.

The user interface itself can be extended to include more
complex annotations. For example, the user can also pro-
vide annotations for some features to be added/dropped from
the plan. This is especially useful for cardinal feature as the

modified feature count represents what is ideal to the user.
For example, if the user’s preference doesn’t increase after
visiting more than 2 lakes. Then this can be communicated
by removing extra lake features from a plan trace.

We have mentioned categorical and cardinal features, but
our framework is also intended to support real-valued fea-
tures. We would need to adapt our active learning process
to elicit feedback as to what the minimum, optimum and
maximum values of such features are. These would be the
minimum essential points to sample for approximating the
underlying utility function.

Lastly, we would like to simplify the function by which
we choose plan traces in successive rounds of active learn-
ing. We think that the similarity with traces from previous
rounds is unnecessary, and might not appreciably reduce the
cognitive load on the user. We think that just diversity and
selecting traces that are much more preferred(closer to 1.0)
or much less preferred(closer to 0.0) would be sufficient.

Acknowledgments
This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-
2840, the AFOSR grant FA9550-18-1-0067, NASA grant
NNX17AD06G and JP Morgan faculty research grant.

References
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Planning
with qualitative temporal preferences. KR 6:134–144.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Cp-nets: A tool for representing and
reasoning withconditional ceteris paribus preference state-
ments. Journal of artificial intelligence research 21:135–
191.
Braziunas, D., and Boutilier, C. 2006. Preference elicitation
and generalized additive utility. In AAAI, volume 21.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in pddl3. Technical report, Technical Report 2005-
08-07, Department of Electronics for Automation .
Huth, M., and Ryan, M. 2004. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge univer-
sity press.
Miller, T. 2018. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence.
Schmidhuber, J., and Hochreiter, S. 1997. Long short-term
memory. Neural Comput 9(8):1735–1780.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

Towards Explainable AI Planning as a Service

Michael Cashmore1, Anna Collins1, Benjamin Krarup1, Senka Krivic1,
Daniele Magazzeni1, David Smith

1King’s College London, United Kingdom, {firstname.surname}@kcl.ac.uk

Abstract

Explainable AI is an important area of research within which
Explainable Planning is an emerging topic. In this paper, we
argue that Explainable Planning can be designed as a service
– that is, as a wrapper around an existing planning system that
utilises the existing planner to assist in answering contrastive
questions. We introduce a prototype framework to facilitate
this, along with some examples of how a planner can be used
to address certain types of contrastive questions. We discuss
the main advantages and limitations of such an approach and
we identify open questions for Explainable Planning as a ser-
vice that identify several possible research directions.

1 Introduction
Explainable Artificial Intelligence (XAI) is an emerging re-
search area in AI, motivated by the need to engender trust in
users by explaining to them why the AI is making a particu-
lar decision.

While the main focus of XAI has been in Machine Learn-
ing, recently there has been growing interest in Explain-
able Planning, as shown by many planning contributions
at the IJCAI International Workshops on XAI (XAI 2017;
2018) and the successful first ICAPS Workshop on Ex-
plainable Planning (XAIP 2018). Since the initial ideas of
Smith (2012), there has been significant effort, in partic-
ular on the topic of Human-Aware Planning and Model
Reconciliation (Chakraborti et al. 2017; Zhang et al. 2017;
Sreedharan, Chakraborti, and Kambhampati 2018). Other
significant works include topics such as Explainable Agency
(Langley et al. 2017), moral values (Lindner, Mattmüller,
and Nebel 2018), insights from social science (Miller 2019),
and preferred explanations (Sohrabi, Baier, and McIlraith
2011).

A roadmap for Explainable Planning (XAIP) was pro-
posed by Fox, Long, and Magazzeni (2017). They discussed
some types of user questions that should be addressed. In
particular, one type of question is of the form “Why did you
do A rather than B?”. We refer to this type of question as
a contrastive question. To answer this kind of question one
must reason about the hypothetical alternative “B”, which
likely means constructing an alternative plan where “B” is
used rather than “A”. The hypothetical alternative would be
a plan that is not better than the one found by the planner or
a plan which is better than the original one. Providing such

s0

sk

g

sk+1

sk+2

rk+1

rk+2

s0

sk

g g

sk+1

sk+2

rk+1

rk+2

rk+n
sk+m

A B A B

Figure 1: Generating contrastive explanations for a question
”Why A rather than B?” at the state sk.

a comparison between alternatives is what is called a con-
trastive explanation.

Fig. 1 shows an example of a contrastive question (Fox,
Long, and Magazzeni 2017). Given a plan from the initial
state s0 to the goal g, the users might suggest an alterna-
tive action B rather than A at the state sk. To provide a con-
trastive explanation means forcing action B and then replan-
ning from the resulting state to see the alternative plan. One
possible alternative is a sequence of different actions that
rejoin the original plan with a different cost (Fig. 1 left).
Another possibility is a completely alternative sequence of
actions that achieves the goal (Fig. 1 right). In both cases the
user can compare costs to gain confidence on the quality of
the plan found by the planner.

Given that planning is now used in safety-critical appli-
cations, for example oil-well drilling (Long 2018), explana-
tions play a key role. Crucially, the greater the expense or
risks in executing the plan, the more important the role of
explanations for engendering trust in the users who are re-
sponsible and accountable for authorising the execution of a
plan.

In this paper, we propose that Explainable Planning can
be designed and constructed as a service – i.e., as a wrap-
per around an existing planning system that takes as input
the current planning problem and domain model, the current
plan, and the user’s question. It must have the ability to in-
voke the existing planning system on hypothetical problems
in order to address contrastive questions. This approach al-
lows users to get explanations constructed from their own
trusted planner and model. In complex or safety-critical do-
mains this requirement is a crucial one. There is one im-

portant requirement, however; in order to effectively use the
existing planning system, the XAIP service must be able to
add constraints on the planning problem and domain model.
However, the user will not accept an explanation generated
using a model that differs from the original one that is poten-
tially verified and trusted. Hence the explanation generated
using the model revised with constraints has to be validated
against the original model. In other words, the contrastive
explanation should contain an executable plan which leads
to the goal state that the original planner could have created
using the original model.

Ideally, constraints over models should be described us-
ing a rich language designed for specifying constraints on
the form of a desired plan. However, in many cases, these
constraints can be compiled down into the domain model
directly, which requires that the XAIP service have visibil-
ity and access into that model. This approach is otherwise
agnostic about the domain model and the planner.

We have implemented this approach in a prototype frame-
work for XAIP as a Service, in a PDDL setting, as it is a
widely used planning language.

In particular, in this paper, we (1) present a prototype
framework that enables Explainable Planning as a Service
for contrastive questions, (2) describe some important cate-
gories of contrastive questions, (3) describe how the service
compiles these contrastive questions into hypothetical plan-
ning problems that can then be solved by the existing plan-
ner to facilitate contrastive explanations, and (4) discuss the
current state of our implementation and a roadmap for future
work on Explainable Planning as a Service.

The paper is organised as follows: we start with a run-
ning example in the next section. In Section 3 we describe
the XAIP as a Service framework, providing details for each
component. In Section 4 we briefly discuss the framework
that implements this approach. In Section 5 we discuss open
issues and present a roadmap that identifies several possible
research directions. Section 6 concludes the paper.

2 Running Example
As a running example throughout the paper, we use a sim-
plified version of a safety-critical model that might be used
in industry. The model describes a warehouse organisation
delivery system. There are one or more robots that work to-
gether to move pallets from their delivery location to the cor-
rect storage shelf. Before the pallets can be stored the shelf
must be scanned.

Fig. 2 defines the domain for this model. There are four
temporal actions, goto waypoint, scan shel f , load pallet,
and unload pallet. The goto waypoint action is used for
the robots to navigate the factory. It ensures that the shelf
the robot is moving to is not occupied by another robot to
stop congestion. The scan shel f action is a sensing action.
The load pallet action loads the pallet from a shelf on to
the robot. The robots do not have the ability to scan the shelf
while holding a pallet. Finally, the unload pallet action un-
loads the pallet onto a previously scanned shelf.

The problem we use as an example is shown in Fig. 3.
There are two robots, two pallets, and six waypoints.

An example plan for this planning problem is shown in
Fig. 4, its cost is its duration (20.003) which in this case is
the optimal plan 1. Upon close examination, the plan does
not appear straight-forward. Both pallets are delivered by a
single robot, and there are a lot of movements that appear to
be inefficient. For example, the robot Tom moves away from
waypoint sh6, even though there is an undelivered pallet at
that location. It might seem more efficient to pick up that pal-
let while the robot is beside it. Without access to the domain
and problem shown in Fig. 2 and 3, or without understand-
ing of PDDL semantics, the behaviour of these robots will
be opaque to a user, and explanation required.

(:types
waypoint robot - locatable
pallet

)
(:predicates

(robot_at ?v - robot ?wp - waypoint)
(connected ?from ?to - waypoint)
(visited ?wp - waypoint)
(not_occupied ?wp - waypoint)
(scanned_shelf ?shelf - waypoint)
(pallet_at ?p - pallet ?l - locatable)
(not_holding_pallet ?v - robot)

)
(:functions

(travel_time ?wp1 ?wp2 - waypoint))
(:durative-action goto_waypoint

:parameters (?v - robot
?from ?to - waypoint)

:duration(= ?duration
(travel_time ?from ?to))

:condition (and
(at start (robot_at ?v ?from))
(at start (not_occupied ?to))
(over all (connected ?from ?to)))

:effect (and
(at start (not (not_occupied ?to)))
(at end (not_occupied ?from))
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to)))

)
(:durative-action scan_shelf

:parameters (?v - robot
?shelf - waypoint)

...)
(:durative-action load_pallet

:parameters (?v - robot ?p - pallet
?shelf - waypoint)

...)
(:durative-action unload_pallet

:parameters (?v - robot ?p - pallet
?shelf - waypoint)

...)

Figure 2: A fragment of a robotics domain used as a running
example. Some of the operator bodies have been omitted for
space.

1The plan is obtained using the planner POPF (Coles et al.
2010). However our framework accounts for all PDDL2.1 planners.

(define (problem task)
(:domain warehouse_domain)
(:objects

sh1 sh2 sh3 sh4 sh5 sh6 - waypoint
p1 p2 - pallet
Jerry Tom - robot

)
(:init

(robot_at Jerry sh3)
(robot_at Tom sh5)
(not_holding_pallet Jerry)
(not_holding_pallet Tom)
(not_occupied sh1) (not_occupied sh2)
(not_occupied sh4) (not_occupied sh6)
(pallet_at p1 sh3) (pallet_at p2 sh6)
(connected sh1 sh2) (connected sh2 sh1)
(connected sh2 sh3) (connected sh3 sh2)
...
(= (travel_time sh1 sh2) 4)
(= (travel_time sh2 sh1) 4)
(= (travel_time sh2 sh3) 8)
(= (travel_time sh3 sh2) 8)
...

)
(:goal (and

(pallet_at p1 sh6)
(pallet_at p2 sh1))))

Figure 3: A fragment of the problem instance used in the
running example.

0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
4.001: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
8.001: (scan_shelf Tom sh1) [1.000]
8.002: (goto_waypoint Jerry sh5 sh6) [3.000]
9.001: (goto_waypoint Tom sh1 sh2) [4.000]
11.002: (unload_pallet Jerry p1 sh6) [1.500]
12.503: (load_pallet Jerry p2 sh6) [2.000]
14.503: (goto_waypoint Jerry sh6 sh1) [4.000]
18.503: (unload_pallet Jerry p2 sh1) [1.500]

Figure 4: Plan generated from the example domain and prob-
lem with cost 20.003.

3 Providing explanations as a Service
We present an XAIP Service framework for providing con-
trastive explanations. Figure 5 summarises the approach
taken by the framework, following these steps:

Step 1: The XAIP Service takes as input the planning prob-
lem and model, the plan, and the question from the
user.

Step 2: The contrastive question implies a hypothetical
model characterised as an additional set of con-
straints on the actions and timing of the original
problem. These constraints can then be compiled
into a revised domain model (HModel) suitable for
use by the original planner.

Planner

Plan

HModel

HPlan

HModel
Generation

HPlan
Synthesis

Validate
HPlan

Model
step 1

XAIP Service

?

step 1

step 2

step 3

Contrastive
Explanation

step 4

HPlan

step 5

Iterative
Process

step 6

Figure 5: Architecture for Explainable Planning as a service,
following the steps described in Section 3.

Step 3: The original planner uses the HModel as input to
produce the hypothetical plan (HPlan).

Step 4: The XAIP Service validates the HPlan according to
the original model.

Step 5: A contrastive explanation is constructed from the
original plan and HPlan, and shown to the user.

Step 6: The user can choose to iterate the process from Step
1 with a new question. The user can choose to re-
peat the process with the original model and plan,
or any HModel and HPlan.

The role of the HModel is to coerce the planner into cre-
ating the alternative plan that includes the actions and tem-
poral constraints the user has in mind. One or more con-
straints must be added to the original model to create the
HModel. We distinguish between three levels of abstraction
in this process: In the first level the user question is given
in natural language. The second level is a formal question
that is derived from the natural language question. The for-
mal question represents a set of constraints that are to be
imposed upon the original model. Finally, the third level is
a compilation of the formal question into the planning lan-
guage. In our framework we focus on PDDL2.1 as the plan-
ning language, as we are interested in temporal and numeric
planning problems. In this paper we describe the overall ap-
proach, and present a framework that encapsulates this pro-
cess. The framework is modular, and allows different inter-
faces for providing user questions, and presenting explana-
tions. The interface currently implemented in the framework
allows the user to select a formal question directly. This rep-
resents constraints upon the plan. The set of formal question
types from which the selection is made is described below
in Section 3.1. For example, the user might have a question
for the running example such as:

“At the point in the plan where action
(goto waypoint Tom sh6 sh1) is used, there’s a
pallet, so why doesn’t Tom pick it up?”

From the user question above the following formal question
is derived:

Why is action A used in state S, rather than action B?

Where action A is (goto waypoint Tom sh6 sh1), action B
is (load pallet Tom p2 sh6), and the state S is the state in
which action A was originally applied. This constraint en-
forces that the plan includes action B in state S instead.

Finally, this constraint can be compiled into the original
model to produce the HModel, as described in Section 3.2.

3.1 Encoding User Questions
The user question is encoded as a set of constraints, which
represent the formal question, and this is be done through
an user interface where the user is guided to select the con-
straints that match their question. The questions we are in-
terested in are contrastive questions of the form, ”Why A
rather than B?”, where A is the fact (i.e. what occurred in
the plan) and B is the foil (i.e. the hypothetical alternative ex-
pected by the user). The formal questions currently handled
by our approach are:
• “Why is action A used in the plan, rather than not being

used?” This constraint would prevent the action A from
being used in the plan.

• “Why is action A not used in the plan, rather than being
used?” This constraint would enforce that the action A is
applied at some point in the plan.

• “Why is action A used, rather than action B?” This con-
straint is a combination of the previous two, which en-
forces that the plan include action B and not action A.

• “Why is action A used before/after action B (rather than
after/before)?” This constraint enforces that if action A is
used, action B must appear earlier/later in the plan.

• “Why is action A used outside of time window W, rather
than only being allowed inside W?” This constraint forces
the planner to schedule action A within a specific time
window.

One specific form of the question: “Why is action A used,
rather than action B?”, represented in Fig. 1, is “Why is ac-
tion A used in state S, rather than action B?”. This refine-
ment forces the plan to include action B in state S, where
B is an action (different from A) that is valid in that state.
Using this constraint, the actions leading up to state S would
remain unchanged, and the action A would still be allowed
in other parts of the plan.

Deriving a formal question from a user question in natu-
ral language represents a significant research challenge. We
discuss how a formal question might be identified automati-
cally from natural language in Section 5.

While this set of formal questions covers a wide a range
of possible situations and explanations, this does not com-
prise a complete set of constraints that could be applied to
the problem. However, a single explanation does not exist in
a vacuum, and a user might have a series of questions that
will iteratively increase their understanding of the plan pro-
posed by the planner, or the user can realise that the first
question was not complete. For this reason, following ideas
of Smith (2012), the framework allows the user to apply a se-
quence of formal questions to a single plan. For example, the
general question “Why is action A used, rather than action
B” can be seen as a combination of the first two questions,

Figure 6: Example of iterative explanations.

which force action B to appear in the plan and not action A.
This allows for a much wider range of explanations. Clearly
the requirement of the plan being valid according to the orig-
inal model must be satisfied at each iteration.

To allow the user to explore the space of hypothetical
plans, it is possible to generate a tree of contrastive expla-
nations in our framework, as illustrated in Fig. 6. Each node
of the tree represents a hypothetical plan that was generated
following a user question. The user can impose additional
formal questions to a given plan in order to more precisely
explore the behaviour that they are interested in. If the first
question did not result in expected behaviour, the user can
ask new questions to refine the hypothetical model until they
reach a contrastive explanation that is satisfying to them.

As previously identified, the corresponding formal ques-
tion in our running example is “Why is action A
used in state S , rather than action B?”, where ac-
tion A is (goto waypoint Tom sh6 sh1), action B is
(load pallet Tom p2 sh6), and the state S is the state in
which action A was originally applied.

3.2 Constructing the HModel
Constructing an HModel consists of taking the constraints
in the formal question and compiling them into the planning
domain model.

We give one example of this step, using the original model
and plan shown in Section 2, and the question above. The
compilation is formed such that the ground action B appears
in the plan in place of the action A. Given a plan:

π = 〈a1,a2, . . . ,an〉
The ground action ai = A is replaced with B. The state di-
rectly after B has finished executing is found. This then be-
comes the new initial state I′ in the HModel. The frame-
work uses the effects at each happening, computed by
VAL (Howey, Long, and Fox 2004), up to the replacement
action to compute I′.

In addition, the new initial state I′ is extended with a set
of timed-initial-literals (TILs) which model the effects of
actions that have started but not yet finished execution in the
state selected by the user. A TIL is a tuple 〈t, p〉 where p is
the effect that is asserted, and t is the time at which it is ap-
plied. Specifically, for each action a j not finished executing
in state S, we add the TIL:

〈start(a j)+duration(a j)− start(B),e f f ect(a j)〉

0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
4.001: (load pallet Tom p2 sh6) [2.000]
6.002: (unload_pallet Tom p2 sh6) [1.500]
7.502: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
11.502: (scan_shelf Tom sh1) [1.000]
11.503: (goto_waypoint Jerry sh5 sh6) [3.000]
12.502: (goto_waypoint Tom sh1 sh2) [4.000]
14.503: (unload_pallet Jerry p1 sh6) [1.500]
16.004: (load_pallet Jerry p2 sh6) [2.000]
18.004: (goto_waypoint Jerry sh6 sh1) [4.000]
22.004: (unload_pallet Jerry p2 sh1) [1.500]

Figure 7: HPlan generated with a cost of 23.504. The re-
placed action is highlighted.

where start(a j) (start(a j)) is the time at which the action
a j (B) started execution, duration(a j) is the planned dura-
tion of action a j, and e f f ect(a j) is the end effect of action
a j. In this example the action (goto waypoint Jerrysh3sh4)
is still executing in the state where our action is re-
placed. We add a TIL which makes (not occupied sh3), and
(robot at Jerrysh4) true at time 2.999 in I′. This simulates
finishing of the concurrent action execution.

A plan is then generated from this new state for the origi-
nal goal, which gives us the plan:

π
′ = 〈a′1,a′2, . . . ,a′n〉

The HPlan is then the initial actions of the original plan π up
to ai, concatenated with the replaced action B and the new
plan π ′:

〈a1,a2, . . . ,ai−1,B,a′1,a
′
2, . . . ,a

′
n〉

The result is the HPlan shown in Fig. 7. The replaced action
(B) is shown in bold. The initial actions before B are the ac-
tions from the original plan. The remaining actions are those
of the new plan π ′. As part of the service, the HPlan is vali-
dated with respect to the original model before a contrastive
explanation is formed.

Note that in this HPlan, the user action is immediately
reversed. This would not be a satisfactory explanation to the
user, who wishes to see the plan in which carrying the pallet
is essential to achieve the goal. Thus, it is not sufficient for
the user suggested action to just be included in the plan, it
must be part of the plan’s key causal structure.

Fink and Yang (1992) define four categories of redundant
actions, and Chrpa, Mccluskey, and Osborne (2012) present
a simple algorithm to determine if an action is redundant in
a sequential plan. As a post-processing step, after generating
an HPlan, redundant actions of this kind can be detected. If
suggested actions are not essential (redundant) to the HPlan,
the planner needs to continue to search for additional plans
until it finds one where the suggested actions are part of the
causal structure for achieving the original goals. This addi-
tional search could potentially be made more efficient by in-
troducing additional constraints (nogoods) into the HModel

that rule out alternative ways of achieving those goals, ulti-
mately leaving only plans where the suggested actions are
essential. For example, if the action B is redundant in the
HPlan and action C is used instead of A, an additional con-
straint could be introduced to disallow C. In general, it is still
an open question how to automatically infer useful nogood
constraints from redundant HPlans.

An alternative is to allow the user to refine their question
to rule out additional alternative solutions in which the sug-
gested action is not essential. For example, the user’s ques-
tion might be expanded to include the constraint “and don’t
use actions C or D either”. In either case it is clear that XAIP
as a Service needs to follow an iterative approach where the
planner generates a sequence of progressively more refined
solutions, as additional constraints are imposed by nogoods,
or by successive refinement of the user question. This is dis-
cussed further in Section 3.3.

Ideally, we would like to compile the original user ques-
tion into an HModel that guarantees that suggested actions
are essential to the causal structure of the plan (not redun-
dant). However, it is an open question as to whether it is
possible to do this. We suspect not. It is easy to force an ac-
tion into a plan by adding a phantom effect to the action, and
adding this phantom proposition to the goal. However, it is
not obvious how to ensure that the action play an essential
part in the achievement of other goals.

In addition to the example shown here, our framework in-
cludes compilations for all of the questions introduced in
Section 3.1. Contrary to the compilation process of the pre-
sented example, the constraints posed from other questions
are directly compiled into HModels which are used to pro-
duce HPlans.

3.3 Explainable Planning as an Iterative Process

Following the ideas of iterative processes by Smith (2012),
we follow the same approach for explainable planning.

The user is able to use the framework to iterate the pro-
cess by asking further questions, and refining the HModel.
If the explanation does not completely satisfy the user, this
allows the user to impose additional constraints that can be
compiled into the HModel. For example, given the HPlan in
Fig. 7, the user may have an additional question:

“Wait, shouldn’t Tom have taken the pallet to its desti-
nation?”

Through the user interface with the framework the user se-
lects a formal question. The formal question which encapsu-
lates this user question is

Why is the action A not used in the plan, rather than
being used?

Where action A is the action (unload pallet Tom p2 sh1).
This constraint enforces that action A is used in the plan.

This constraint compiled into the HModel to enforce the
user’s suggestion, resulting in a new HModel. The HModel
is then solved with the original planner to obtain the plan
shown in 8.

0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
3.002: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
7.003: (scan_shelf Tom sh1) [1.000]
7.004: (goto_waypoint Tom sh1 sh6) [4.000]
11.004: (load_pallet Tom p2 sh6) [2.000]
13.004: (goto_waypoint Tom sh6 sh1) [4.000]
17.004: (unload pallet Tom p2 sh1) [1.500]
17.005: (goto_waypoint Jerry sh5 sh6) [3.000]
20.005: (unload_pallet Jerry p1 sh6) [1.500]

Figure 8: HPlan generated with the second user constraint
maintained, with a cost 21.505. The action suggested by the
user is highlighted.

3.4 Forming Contrastive explanations
A contrastive explanation draws from the original plan π , the
HPlan πH and the validation outcome. Defining a contrastive
explanation is a complex task. In this paper we introduce a
foundation for the contrastive comparison as a result of a
comparison between the original plan and the HPlan.

The contrastive explanation can be defined as

CE = 〈comparison,Q〉

where comparison contains relevant information about the
differences in plans that were caused by the user question Q:
comparison(π,πH) = 〈existing,removed,added,di f f cost〉
where:
• existing - actions in the plan which remained the same
• removed - actions which were removed from the plan
• added - actions which were added in HPlan and were not

in original plan
• diffcost - the difference between the cost of the plans

By observing the comparison, a user can reason about
the effect of the constraints that their question imposed and
about the behaviour of the model. The validation outcome
(performed against the original model) reassures the user
about the validity of the HPlan. It also helps the user un-
derstand the difference between the costs of the two plans.
The contrastive explanation for the HPlan in Fig. 8 is shown
in Fig. 9.

4 XAIP as a Service Framework
For the purpose of evaluating the proposed approach to Ex-
plainable Planning as a Service we implemented a modular
framework for domains and problems written in PDDL2.1.
This prototype works with any planner capable of reasoning
with PDDL2.1. The architecture of the framework is illus-
trated in Fig. 10. Interaction with a user is enabled through
a console interface as well as a graphical user interface.

The Controller controls the behaviour of the XAIP frame-
work and communicates with all other segments of the
framework. The XAIP Interface creates a knowledge base

existing:

0.000: (goto_waypoint Tom sh5 sh6) [3.000]
0.000: (load_pallet Jerry p1 sh3) [2.000]
2.000: (goto_waypoint Jerry sh3 sh4) [5.000]
3.001: (scan_shelf Tom sh6) [1.000]
3.002: (goto_waypoint Tom sh6 sh1) [4.000]
7.001: (goto_waypoint Jerry sh4 sh5) [1.000]
7.003: (scan_shelf Tom sh1) [1.000]
17.005: (goto_waypoint Jerry sh5 sh6) [3.000]
20.005: (unload_pallet Jerry p1 sh6) [1.500]

removed:

9.001: (goto_waypoint Tom sh1 sh6) [4.000]
12.503: (load_pallet Jerry p2 sh6) [2.000]
14.503: (goto_waypoint Jerry sh6 sh1) [4.000]
18.503: (unload_pallet Jerry p2 sh1) [1.500]

added:

7.004: (goto_waypoint Tom sh1 sh6) [4.000]
11.004: (load_pallet Tom p2 sh6) [2.000]
13.004: (goto_waypoint Tom sh6 sh1) [4.000]
17.004: (unload_pallet Tom p2 sh1) [1.500]

di f f cost = 21.505−20.003 = 1.502

Figure 9: The contrastive explanation that is presented to the
user.

Model

Planner

Plan

Question

XAIP
Interface

User

InterpreterHuman -XAIP
 Interface

Controller VAL

Compilation

XAIP
Service

Figure 10: Architecture of the framework for Explainable
Planning as a service.

from the PDDL files of the original model. This module
also interacts with a planner. The Compilation module uses
the constraints of the formal question to create the HModel.
The validation module VAL (Howey, Long, and Fox 2004)
is used as the validation technique.

The Human-XAIP interface and interpreter receives the
questions from the user, creates a formal question instance,
and demonstrates the explanation to the user. There are two
implementations of this interface: a console and graphical
user interface (Fig. 11). Both provide the same functionality,
in which a user can see the plan, ask a formal question from
the set of questions presented in Section 3.1, either by using
a simple console interface or a set of forms for filling in the
necessary details of the question. The output of the system is
a visualisation of the original plan, HPlan, and VAL report.
Actions in the plan are highlighted to correspond with the
comparison described in Section 3.4.

(a) Loading model (b) Plan visualisation (c) Question selection

Figure 11: Screenshots of the graphical user interface of the XAIP Service framework

5 Discussion
In order for Explainable Planning as a service to become
effective, we discuss some challenges and outline some po-
tential future work.

• Understanding user questions. The framework is modu-
lar to enable different ways for communicating a question
to the AI system. Depending on the user interface a ques-
tion could be given in different forms, for example speech,
visual gestures or text input. Different technologies can
be used to translate the question into a formal question
such as: speech recognition, Natural Language Process-
ing methods or human body tracking. Context can play
a crucial role in understanding the question that the user
asks. Borgo, Cashmore, and Magazzeni (2018) showed
an example of a question requiring two different explana-
tions depending on the context in which it was asked. In
each case, improperly interpreting the question lead to an
unsatisfying explanation. One promising direction for ad-
dressing this challenge is the use of argumentation (Cyras
et al. 2019).

• Formally categorising the set of questions that can be
answered with contrastive explanations. Although some
philosophers, such as van Fraassen (1980), noted that
“why”-questions can be implicitly or explicitly under-
stood as: “why is A better than some alternative?”, there
might be questions in the planning space for which con-
trastive explanations are not well-suited. For example, if
the user is simply trying to understand the conditions or
requirements for various actions in the plan, or the causal
or temporal structure of the plan, a contrastive explana-
tion may not be appropriate. Instead it might be more ap-
propriate to highlight the causal structure in an abstracted
version of the plan. An important issue for future work
is the development of a formal taxonomy of the types of
questions that should be addressed using contrastive ex-
planations (Miller 2018).

• Expressing constraints on actions and plan structure. A
contrastive question requires creating a hypothetical plan-
ning model, which is often characterised by constraints
on what actions are permissible in the plan and how they
are arranged. For example, the question “Why did you use

action A rather than action B for achieving P?” requires
planning with the hypothetical model where B is required
to be in the causal support for achieving P, but A is not
in that causal support. This is substantially more difficult
than just universally excluding A from the plan and forc-
ing B into the plan because A or B might be required or
prohibited elsewhere in the plan. Currently we do not have
a good language for expressing these kinds of constraints.
PDDL 3 allows the expression of simple constraints on
the order in which goals are achieved, but does not have
the ability to express constraints on action inclusion, ex-
clusion, or ordering, and does not allow us to place more
complex constraints on how something is achieved or on
plan structure. We would like to be able to say something
simple like “Supports(B,P)∧¬Supports(B,P)”. LTL will
likely play a key role in defining the semantics of any such
language, but additional concepts concerning plan struc-
ture are needed, such as the ability to specify that an ac-
tion is part of the causal support for a goal or subgoal.

• Compiling constraints into the HModel. We showed ex-
amples of how a constraint derived from a user question
could be compiled to form an HModel. However, pro-
viding compilations for more general constraints (like the
one above) and ensuring their correctness is an important
issue. Additionally, the compilation can lead to producing
plans which might differ from the original plan in ways
unrelated to the user question. We believe that the work
on planning with preferences (Gerevini, Saetti, and Serina
2006) and state-trajectory constraints (Baier et al. 2009)
is an important first step, but does not yet address the full
range of constraints needed.

• Forming and presenting contrastive explanations. The
form of contrastive explanation we provide, as discussed
in Section 3.4 and shown in the GUI in Fig. 12, is a
very simple one that presents the original plan and HPlan
and highlights the action differences between them. Also,
it is possible to obtain hierarchical contrastive explana-
tions by asking consecutive questions. However, this does
not show the causality of the plans, or the differences in
their causal structure. Fig. 13 shows a possible compos-
ite causal representation for both the original plan and

Figure 12: Output of the GUI in which differences in the
plans are highlighted.

the HPlan, with the differences shown in different col-
ors. This way of visualising the explanation can help to
elucidate how the two plans achieve, or fail to achieve,
the (sub)goals of the problem with respect to specific ac-
tions in the domain. However, for larger and more com-
plex plans we expect that some form of abstraction will
be necessary in order to effectively compare and con-
trast plans; the user might wants to see the important
differences between two plans, not all the details. What
counts as details remains an open research question, but
is likely related to action costs and to the ease and im-
portance of achieving various subgoals. Sreedharan, Sri-
vastava, and Kambhampati (2018) have done some initial
work in this area, and have considered milestones as im-
portant abstractions for purposes of explanation. The is-
sues of what constitutes a good explanation, and how to
visualize it or present it remain intertwined. Some synergy
between researchers in planning, data visualization (e.g.,
Chakraborti et al. (2018) or Mennatallah et al. (2018)),
and social sciences (Miller 2019) would be fruitful.

• Providing explanations for complex questions. In the pre-
sented approach, a user is able to iteratively ask questions

to refine the explanation. If the explanation does not sat-
isfy the user, or the question they have is more complex,
this approach can provide the user with a deeper under-
standing. However, this process could be automated by
analysing a more complex question the user might have,
and decomposing it into several formal questions. In this
case new constraints can be added to the HModel au-
tomatically until the explanation addresses the intended
question and potentially the context it was asked within.

• Assessing the effectiveness of explanations. We believe
it is crucial to be able to acquire evidence of the effec-
tiveness of an explanation. In particular, if engendering
trust is the motivation for Explainable Planning and XAI
in general, then we should look at the actual experience
of the users and check whether they gain confidence in
the planner or not. For this, a vital step for planning re-
searchers is to include user studies to assess the effective-
ness of the explanations they are providing.

While of course this is not an exhaustive list of all the
necessary next steps, it already provides an interesting set
of challenges that should be addressed. Note that while we
are advocating for Explainable Planning as a service, we
are well aware that this is not the only way to provide ex-
planations for planning. In particular, we envisage at least
the following possible limitations that nevertheless repre-
sent important research questions that should be considered
by the Explainable Planning community. First we acknowl-
edge that contrastive explanations are not suitable to answer
every type of question that the user might have. However,
we argue that contrastive questions are common and that
contrastive explanations therefore play a significant role, as
also acknowledged by other researchers in Explainable AI,
e.g, (Miller 2018). Second, by lifting the requirement that
the explanation is generated by the planner used to generate
the original plan, it could be possible to modify the search
procedure used by the planner to generate explanations from
a wider set of constraints. Third, we are assuming that there
is no uncertainty in the original planning model and that the
model is correct. However, this is not always the case and

goto_waypoint_start(Tom,sh5,sh6)

goto_waypoint_end(Tom,sh5,sh6)

scan_shelf_start(Tom,sh6)goto_waypoint_start(Tom,sh6,sh1) goto_waypoint_start(Jerry,sh4,sh5)

load_pallet_start(Jerry,p1,sh3)

load_pallet_end(Jerry,p1,sh3)

unload_pallet_start(Jerry,p1,sh6)

goto_waypoint_start(Jerry,sh3,sh4)

goto_waypoint_end(Jerry,sh3,sh4)

scan_shelf_end(Tom,sh6)

goto_waypoint_end(Tom,sh6,sh1)

scan_shelf_start(Tom,sh1)

goto_waypoint_start(Jerry,sh5,sh6)

goto_waypoint_start(Tom,sh1,sh2) goto_waypoint_start(Tom,sh1,sh6)

goto_waypoint_end(Jerry,sh4,sh5)

scan_shelf_end(Tom,sh1)

unload_pallet_start(Jerry,p2,sh1)

unload_pallet_start(Tom,p2,sh1)

goto_waypoint_end(Jerry,sh5,sh6)

load_pallet_start(Jerry,p2,sh6)

goto_waypoint_start(Jerry,sh6,sh1)

goto_waypoint_end(Tom,sh1,sh2)

unload_pallet_end(Jerry,p1,sh6)

load_pallet_end(Jerry,p2,sh6)

goto_waypoint_end(Jerry,sh6,sh1)

unload_pallet_end(Jerry,p2,sh1)

goto_waypoint_end(Tom,sh1,sh6)

load_pallet_start(Tom,p2,sh6) goto_waypoint_start(Tom,sh6,sh1)

load_pallet_end(Tom,p2,sh6) goto_waypoint_end(Tom,sh6,sh1)

unload_pallet_end(Tom,p2,sh1)

Figure 13: Example of a causal graph which demonstrates a comparison of the original plan and HPlan. Added actions are red,
removed actions are blue.

for this, the body of research on model reconciliation plays
a very important role (Chakraborti et al. 2017).

6 Conclusions
In this paper we have presented a prototype framework for
Explainable Planning as a service, which we believe rep-
resents an effective way of providing explanations, particu-
larly in safety critical domains. In such scenarios the user
would not accept an explanation that is generated by a plan-
ner or a model different from the ones that they use and
whose performance they trust. To this end, Explainable Plan-
ning as a service is based on providing explanations using
the users’ planners and models. Note that while the users
can trust their planners and their models, there might still
be reasonable questions on why a particular plan was found.
This is where explanations are important, and we propose
contrastive explanations to allow the user to compare the
plan found by the planner with what the user was expecting.

The Explainable Planning as a Service framework is mod-
ular, and can be used with all planners and domains that
ahere to PDDL2.1. In order to foster the use of Explainable
Planning in robotics applications the proposed framework is
now being integrated in ROSPlan (Cashmore et al. 2015).

We proposed a roadmap with some of the challenges that
should be addressed for Explainable Planning to become
effective, also highlighting promising directions. We be-
lieve that synergies between researchers in planning and in
other disciplines, such as data visualization, social science,
human-computer-interaction, and cognitive science, are key
for the practical success of Explainable Planning.

Acknowledgements This work was partially supported by
Innovate UK grant 133549: Intelligent Situational Aware-
ness Platform, and by EPSRC grant EP/R033722/1: Trust in
Human-Machine Partnerships.

References
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artif. Intell. 173(5-6):593–618.
Borgo, R.; Cashmore, M.; and Magazzeni, D. 2018. Towards
providing explanations for AI planner decisions. IJCAI-18
Workshop on Explainable AI.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
ICAPS.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. E.
2018. Visualizations for an explainable planning agent. In
IJCAI.
Chrpa, L.; Mccluskey, T. L.; and Osborne, H. 2012. Deter-
mining redundant actions in sequential plans. In ICTAI.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In ICAPS.
Cyras, K.; Letsios, D.; Misener, R.; and Toni, F.
2019. Argumentation for explainable scheduling. In
https://arxiv.org/abs/1811.05437.
Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In Conference of the Canadian Society for Computational
Studies of Intelligence, 9–14.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explain-
able planning. IJCAI-17 workshop on Explainable AI
abs/1709.10256.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. JAIR 25.
Howey, R.; Long, D.; and Fox, M. 2004. Val: automatic plan
validation, continuous effects and mixed initiative planning
using pddl. In 16th IEEE International Conference on Tools
with Artificial Intelligence, 294–301.
Langley, P.; Meadows, B.; Sridharan, M.; and Choi, D. 2017.
Explainable agency for intelligent autonomous systems. In
AAAI.
Lindner, F.; Mattmüller, R.; and Nebel, B. 2018. Moral
permissibility of action plans. ICAPS-18 Workshop on Ex-
plainable Planning.
Long, D. 2018. Planning a way into a deep hole. In In-
vited talk at ICAPS Workshop on Planning and Scheduling
Applications (SPARK).
Mennatallah, E.-A.; Duen Horng, C.; Adam, P.; Hendrik, S.;
and Fernanda, V. 2018. Workshop on visualization for AI
explainability. In http://visxai.io/.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. arXiv preprint arXiv:1811.03163.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence 267.
Smith, D. 2012. Planning as an iterative process. In AAAI.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Preferred
explanations: Theory and generation via planning. In AAAI.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling model uncertainty and multiplicity in explanations
via model reconciliation. In ICAPS.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2018.
Hierarchical expertise-level modeling for user specific con-
trastive explanations. In IJCAI.
van Fraassen, C. B. 1980. The Scientific Image. Oxford
University Press.
XAI. 2017. IJCAI Workshop on Explainable AI.
http://home.earthlink.net/dwaha/research/meetings/ijcai17-xai.
XAI. 2018. IJCAI Workshop on Explainable AI.
http://home.earthlink.net/dwaha/research/meetings/faim18-xai.
XAIP. 2018. ICAPS Workshop on Explainable Planning.
http://icaps18.icaps-conference.org/xaip.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.; Zhuo, H.;
and Kambhampati, S. 2017. Plan explicability and predictability
for robot task planning. In ICRA.

Varieties of Explainable Agency

Pat Langley
Institute for the Study of Learning and Expertise,
2164 Staunton Court, Palo Alto, CA 94306 USA

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland 1142 NZ

Abstract
In this paper, I discuss some varieties of explanation that
can arise in intelligent agents. I distinguish between process
accounts, which address the detailed decisions made during
heuristic search, and preference accounts, which clarify the
ordering of alternatives independent of how they were gener-
ated. I also hypothesize which types of users will appreciate
which types of explanation. In addition, I discuss three facets
of multi-step decision making – conceptual inference, plan
generation, and plan execution – in which explanations can
arise. I also consider alternative ways to present questions to
agents and for them provide their answers.

1 Introduction
Intelligent systems are becoming more widely adopted
for critical tasks like driving cars and controlling military
robots. Our increased reliance on such devices has led to
concerns about the interpretability of their complex behav-
ior. Before we can fully trust such autonomous agents, they
must be able to explain their decisions so that we can gain
insight into their operation. There is now a substantial liter-
ature on explanation in systems that learn from experience,
but it has focused on tasks like object recognition and reac-
tive control, typically using opaque encodings of expertise.

However, we also need research on explanation for more
complex tasks that involve multi-step decision making, such
as the generation and execution of plans. Approaches to
these problems rely on high-level representations that are
themselves easily interpreted, but challenges arise in com-
municating solutions that combine these elements and the
reasons they were chosen. In this paper, I focus on such set-
tings. Some work on explanation, especially with opaque
models, has dealt with post hoc rationalizations of behav-
ior, rather than the actual reasons for it. In the pages that
follow, I limit my discussion to the latter. Moreover, I will
focus on self explanations, that is, the reasons the explain-
ing agent carried out a certain activity. Elsewhere (Langley,
2019), I have referred to this ability as explainable agency.
This problem is arguably less challenging than postulating
the reasons that another agent behaved as it did, sometimes
called plan recognition, as the system can store and access
traces of its own decision making.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We can specify the task of explainable agency in generic
terms. Given domain knowledge for generating task solu-
tions and criteria for evaluating candidates, the agent carries
out search to find one or more solutions. After generating,
and possibly executing, these solutions, a human asks the
agent to justify its decisions, at which point it must clarify its
reasoning in comprehensible terms. One example involves
an intelligent robot that plans and executes a reconnaissance
mission, after which it takes part in an ‘after-action review’
where it answers questions from a human supervisor. There
has been some research on such explainable planning (Fox
et al., 2017; Smith, 2012; Zhang et al., 2017), but we need
more effort devoted this important topic.

In the next section, I distinguish between two forms of
self explanation, identify component abilities they require,
and citing relevant research. I also propose two hypotheses
about when each type of account will be most useful. Af-
ter this, I discuss three types of content over which one can
generate explanations, along with alternative ways to pose
questions and present answers. In closing, I review the es-
say’s main points and reiterate the need for substantially ad-
ditional research on the topic of explainable agency.

2 Forms of Self Explanation
Before the research community can develop computational
methods for self explanation, it must first establish which as-
pects of decision making to elucidate. I maintain that there
are two primary forms of explanation, which I attempt to
characterize in this section. In each case, I offer some in-
tuitions, define the task in terms of inputs and outputs, and
discuss components that appear necessary to carry it out.

2.1 Process Accounts
The first form of self explanation focuses on the processes
that led a system to generate its plans or other mental struc-
tures. This view revolves around the widespread assump-
tion, which had its origins in the earliest days of artificial in-
telligence, that complex cognition requires heuristic search
through a problem space (Newell and Simon, 1976). This
assumes that the recipients of explanations are interested in
details about how the system carried out that search, includ-
ing which alternatives it considered, why it decided to pur-
sue some in favor of others, and even when it decided to
change its mind (e.g., by deciding to backtrack).

We can specify the generic task of explaining the process-
ing that produced solutions as:

• Given: Knowledge defining a space of possible solutions;
• Given: Criteria for evaluating candidate solutions;
• Given: An annotated search tree that includes solutions

found for some reasoning task;
• Given: A query about why a solution ranks above others;
• Produce: An explanation why the solution is preferable.
This task formulation is similar in spirit to the generation
of think-aloud protocols (Newell and Simon, 1972), which
gave early insights about human problem solving and which
led directly to the creation of early AI systems. In this set-
ting, a researcher presents a subject with some problem (e.g.,
a theorem to prove or a puzzle to solve), asking the subject
to talk aloud as he works on it. The researcher records this
verbal report, transcribes it, and analyzes it to understand
the subject’s thinking processes. One important difference
is that our explanation task occurs after problem solving is
complete. Retrospective reports from in humans far less reli-
able than on-line protocols, but AI systems have better mem-
ories than people, so I will ignore this issue.

Elsewhere (Langley, 2019), I have analyzed the compo-
nent abilities that appear necessary to support this variety of
self explanation. These include ensuring that the intelligent
agent can:

• Generate decision-making content. When carrying our
heuristic search, an agent must consider different nodes
and operators, evaluate them, and select one to pursue.

• Store generated content. When it makes such decisions,
the agent must store and index details about the choices
it considered, and why it selected one of them, in an
episodic memory or similar repository.

• Retrieve stored content. After it has solved a problem,
the agent must transform questions into cues that let it re-
trieve traces of relevant decisions from episodic memory.

• Communicate retrieved content. Once it has retrieved this
information, it must translate this content into an under-
standable form and communicate it.

Taken together, these abilities should let an intelligent sys-
tem not only find solutions to complex problems, but also
recount how it managed to uncover them.

The AI literature includes some relevant research on these
topics. For instance, work on analogical planning (e.g.,
Jones and Langley, 2005; Veloso et al., 1995) has addressed
storage, indexing, and retrieval, but not for use in self expla-
nation. Some expert systems recorded their reasoning and
played them back on request (Clancey, 1983; Swartout et al.,
1991), while Johnson (1994) and van Lent et al. (2004) de-
veloped agents that carried out military mssions, recorded
their decisions, and answered questions about their reason-
ing. Other related work includes an interactive robot that
can give five types of reasons why it cannot carry out a task
(Briggs and Scheutz, 2015) and computational models of ar-
gument (e.g., Bench-Capon and Dunne, 2007) that explain
how alternative conclusions are eiter supported or contra-
dicted by available evidence.

2.2 Preference Accounts

The second form of self explanation focuses on the final so-
lutions produced by heuristic search, without concern for
how they were found. This view recognizes that there are
many different techniques for problem solving. A classic ex-
ample is that some planning methods chain backward from
goal descriptions, whereas others chain forward from the
initial state. Similarly, some approaches to constraint satis-
faction carry out search through a space of partial variable
assignments, whereas others only consider alternatives that
have complete assignments. Even within the same frame-
work, different heuristics can guide search independently of
the target goals or objective function. Nevertheless, these
different systems can arrive at the same solutions by distinct
paths, which can be sources of explanation themselves.

As before, we can state this task more precisely in terms
of inputs and outputs:

• Given: Knowledge defining a space of possible solutions;
• Given: Criteria for evaluating candidate solutions;
• Given: A ranked set of solutions to some reasoning task;
• Given: A query about why a solution ranks above others;
• Produce: An explanation why the solution is preferable.

This task is very different from generating think-aloud pro-
tocols about the choices considered and selected during
heuristic search. Rather, it comes much closer to the task
addressed by recommender systems, which often produce a
ranked list of candidates for users to consider. Most of these
focus on ranking a fixed set of items, such as books, but one
can also rank solutions to planning, scheduling, and other
tasks that involve multi-step reasoning.

The distinction between process and preference explana-
tions is not a matter of granularity, but whether one cares
about means of reaching results or about their quality. To
clarify this point, consider a simplified case-based reason-
ing system that iteratively retrieves a complete plan from
memory, replacing one of the n best candidates with a new
one if the latter scores better. A process account would store
the sequence of candidates considered and explain its final
choices in terms of steps in this procedure. In contrast, a
preference account would retain only the final set of candi-
dates and explain their ordering in terms of how each one
fares on its criteria. An explainable agent should also, when
a given candidate is not in the solution set, state why it was
(presumably) ranked lower than those included.

Neither does the emphasis on preferences imply that ex-
planation must only deal with complete solution structures.
For example, if a planner uses a hierarchical task network to
guide its search, then a user should be able to question why it
selected one subplan for a given subtask rather than another
decomposition. The same idea applies to a system that finds
proof trees using monotonic inference rules, where a user
may ask why it favored one subproof over another candidate
that leads to the same intermediate conclusion. The ability
to focus attention on elements of hierarchical solutions does
not necessarily mean that explanations must touch on how
the solutions were found.

Let us consider the component abilities that seem needed
for an intelligent agent to provide such preference explana-
tions. These include the capacity to:

• Generate and rank solutions. However the agent solves
a problem, it must use explicit, interpretable criteria to
place an ordering on them.

• Compare two ranked solutions. When asked why one so-
lution was placed before another, the agent must compare
their component scores and their combinations.

• Communicate solution differences. Once it has noted how
the candidates differ, it must convey this information and
how it led to their relative rankings.

The details of these abilities will depend on how the scoring
and ranking process operates. One common scoring method
uses a linear utility function that computes each candidate’s
score on k features, multiplies each score by a weight, and
calculates a weighted sum, then orders candidates by this
total. Another scheme uses a lexicographic function, which
orders attributes by importance. Candidates are first parti-
tioned based on scores for the first attribute, then ranked
within these sets based on the second attribute, and so forth,
much as words in a dictionary. The structure of explanations
will depend on the technique used to order solutions.

I mentioned earlier the analogy to recommender systems,
which often rely on a learned user profile to rank candidate
items like books or movies. However, one can use such pro-
files as heuristics to guide search on complex reasoning tasks
and to rank the solutions found in this manner. Rogers et al.
(1998) applied this idea to route planning, drawing on a user
profile, stated as weights on route features, to find person-
alized routes in a digital road map. Gervasio et al. (1999)
adopted a similar approach to personalized scheduling, in-
voking a user profile, here weights on schedule features, to
evaluate candidates and rank solutions. These two efforts are
interesting because the first used best-first search through a
space of partial routes, whereas the second used repair-space
search through a space of complete schedules. Together, they
offer evidence that one can have the same type of preference
explanations for radically different search methods.

2.3 Two Hypotheses about Explanations
Now that we have identified and characterized two forms of
self explanation, we can ask which is them is more useful to
humans who interact with intelligent agents. One might ar-
gue that process explanations are the natural choice, as pro-
viding more details will give greater insight into a system’s
operation. But one might instead hold that preference ac-
counts are superior, because humans have no need to know
how the system found its solutions but only why it ranked
the alternatives as it did.

In this paper, I will not take either position, but instead
claim that the most appropriate form of explanation depends
on the user’s aims. This argument assumes that there are two
quite different types of users, which leads to two hypotheses.
We can state the first as:

• Hypothesis 1: Process explanations will be favored by re-
searchers interested in the details of heuristic search.

This conjecture posits that some users care primarily about
the process of finding solutions. This group includes cogni-
tive psychologists who want to understand the ways in which
an intelligent system mimics, or fails to mimic, a human
problem solver. Yet it also includes many AI researchers
who are concerned with the detailed operation of their sys-
tems, both for debugging purposes and for improving their
search mechanisms.

However, not all users of intelligent systems will care
about the technical details of their search behavior. This sug-
gests a second conjecture, which we can state as:

• Hypothesis 2: Preference explanations will be favored by
system users interested in the results of heuristic search.

This group includes end users of autonomous agents who
had no role in their development. These are analogous to
people who use recommender systems but have little idea
how they operate, but who still want to know why they
ranked one item as better than another. But it will also in-
clude AI researchers, and even psychologists, who are con-
cerned more with criteria used to evaluate solutions than
with the search mechanisms that produce them.

3 Types of Explanatory Content
We should also consider the types of tasks over which ex-
planations of complex multi-step reasoning can occur. Plan-
ning is the most obvious class of domains and the one that
has received the most attention in the literature (Fox et al.,
2017; Smith, 2012). Clearly, a planning system can support
both forms of explanation discussed above. At each stage
in the search process, it can store the choices considered,
their associated scores, and the alternative selected, along
with decisions about when to backtrack. This information
will let it answer detailed queries about the search history.
Of course, planning systems can also find multiple solutions,
rank them, and use their scoring procedure to provide pref-
erence explanations instead.

Plan execution is another important arena that supports
explainable agency (Johnson, 1994; van Lent et al., 2004).
This setting definitely supports process accounts, as the
agent must monitor the environment to determine whether
the plan is proceeding as expected. Detection of anomalies
can be recorded, along with decisions about whether to con-
tinue or to revise the plan. The role of preference accounts
is less obvious when the plans being executed are fully
grounded, as no alternatives are available. However, frame-
works that include reactive control constrained by hierarchi-
cal task networks (e.g., Choi and Langley, 2018) do allow
multiple choices that the agent can rank by value. These will
still be local to the particular situation in which the agent is
taking action, but they should support preference accounts.

A third area involves conceptual inference, which may
not count as agency itself but which certainly supports it.
Here the intelligent system uses knowledge to draw con-
clusions about its situation from information available to
it, using either deductive or abductive reasoning. The lat-
ter mechanisms clearly support process accounts, as demon-
strated by the early work on explainable diagnostic systems
(Clancey, 1983; Swartout et al., 1991), which stored traces

of the reasoning chains that led to their conclusions. How-
ever, conceptual inference also supports preference expla-
nations, since the system may have criteria for evaluating
alternative derivations, such as the length of its reasoning
chain or the number of default assumptions. Such accounts
are most interesting in settings that involve incomplete infor-
mation, where the system may find multiple contradictory
interpretations of its situation.

4 Interaction Modalities
As I have defined them, explainable agents must be able
to accept questions about their decision making and an-
swer them in terms a human can understand, but this does
not specify the modality used for either input or output.
For questions, one obvious alternative is natural language,
but this could be very constrained. In the planning context,
process-oriented queries might use stock phrases to ask what
actions the agent considered, how it scored each one, the ex-
pected results, and which one it selected. Each would need to
include context about the situation, such as upon coming to
the end of the hallway, as this will be needed to identify and
retrieve relevant decisions. If the agent has generated mul-
tiple plans, each question would also specify which one to
examine. Questions in natural language about preference ac-
counts could be much simpler, as they need only state which
candidates the agent should conttrast, although hierarchical
solutions will require some way to specify a subsolution.

Another option would be to ask questions through a
graphical interface that displays, for process explanations,
the search tree that produced solutions. By clicking on a par-
ticular node in this tree, the user would specify both the plan
and the situation being addressed at that point (e.g., when
the agent has come to a fork in the hallway). A drop-down
menu would let the user indicate whether he wants to know
about the choices considered at that point, their evaluation
scores, or the one selected. Again, for preference explana-
tions, a graphical interface would be much simpler, display-
ing alternative solutions, their scores on each criterion, and
the results of combining them. The user would click on two
solutions to compare them or propose his own candidates if
he wants to know why the system did not include them. For
hierarchical solutions, the interface would hide details ini-
tially but let the user drill down when desired to inspect the
rankings for subtasks and the reasoning behind them.

After it has accessed the relevant information, the agent
must respond to the question in terms the user will under-
stand. For process explanations, natural language answers
can rely on templates that are instantiated with relevant do-
main terms. Thus, given a query about what choices it en-
tertained upon reaching the branch in the hallway, it might
say I considered turning left and turning right, which de-
scribe the two actions available in that situation. For prefer-
ence accounts, the agent could simply show the values and
weights of solution criteria, along with the calculation that
combined them, for the contrasted candidates. Here differ-
ent templates would be needed for alternative types of rank-
ing methods. Graphical interfaces offer another way to an-
swer process-related questions, say by highlighting selected
choices in the search tree, or preference-oriented ones, say

by graphing the scores and weights of solution criteria. Sys-
tems that combine natural language and graphical interac-
tions may be desirable, as some users could have an easier
time understanding textual explanations, while others could
instead favor diagrams and graphs.

5 Closing Remarks
In this paper, I reviewed the notion of explainable agents,
which answer questions about the reasoning behind their
complex decision making. I distinguished between two vari-
eties of explanation, one that focuses on the process of find-
ing solutions and another that addresses only the ranking of
these candidates. I also proposed two hypotheses: that re-
searchers interested in details of heuristic search will favor
process accounts, while end users will be more interested
in preference accounts. After this, I argued that plan gen-
eration, plan execution, and conceptual inference all support
both types of explanation, but that execution poses some dif-
ficulties for preference accounts. Finally, I discussed differ-
ent modalities that humans might use to present explanation-
related questions, as well as ones that our agents might use
to answer them.

Research on explainable agency should have high priority
within both planning circies and the broader AI community.
Intelligent agents must be able to explain their reasoning in
terms that are comprehensible by humans and that are rele-
vant to their aims. System users will have different priorities,
focus on distinct problem types, and favor different modali-
ties, and we need frameworks that support their full range
of preferences. However, the first steps should be to de-
sign, implement, and demonstrate examples of explainable
agents that exhibit each of the abilities identified in the anal-
ysis presented here. The experience gained through these ef-
forts will reveal additional challenges that the research com-
munity must overcome to develop truly understandable and
trustworthy intelligent systems.

Acknowledgements
This analysis presented in this paper was supported by a
contract from the Army Research Laboratory and by Grant
N00014-17-1-2434 from the Office of Naval Research, nei-
ther of which are responsible for its contents.

References
Bench-Capon, T.; and Dunne, P. 2007. Argumentation in ar-

tificial intelligence. Artificial Intelligence, 171, 619–641.
Briggs, G.; and Scheutz, M. 2015. “Sorry, I can’t do that:”

Developing mechanisms to appropriately reject directives
in human-robot interactions. Proceedings of the AAAI Fall
Symposium on AI and HRI. Arlington, VA: AAAI Press.

Choi, D., & Langley, P. (2018). Evolution of the ICARUS
cognitive architecture. Cognitive Systems Research, 48,
25–38.

Clancey, W. J. 1983. The epistemology of a rule-based ex-
pert system: A framework for explanation. Artificial Intel-
ligence 20: 215–251.

Colaco, Z.; and Sridharan, M. 2015. What happened and
why? A mixed architecture for planning and explana-
tion generation in robotics. Australasian Conference on
Robotics and Automation. Canberra, Australia.

Gervasio, M. T.; Iba, W.; and Langley, P. 1999. Learning
user evaluation functions for adaptive scheduling assis-
tance. Proceedings of the Sixteenth International Con-
ference on Machine Learning, 152–161. Bled, Slovenia:
Morgan Kaufmann.

Johnson, W. 1994. Agents that learn to explain themselves.
Proceedings of the Twelfth National Conference on Arti-
ficial Intelligence, 1257–1263. Seattle, WA: AAAI Press.

Jones, R. M.; and Langley, P. 2005. A constrained architec-
ture for learning and problem solving. Computational In-
telligence 21: 480–502.

Langley, P. 2019. Explainable, normative, and justified
agency. Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence. Honolulu, HI: AAAI Press.

Newell, A., and Simon, H. A. 1972. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Newell, A.; and Simon, H. A. 1976. Computer science as
empirical enquiry: Symbols and search. Communications
of the ACM 19: 113–126.

Rogers, S.; Fiechter, C.; and Langley, P. 1999. An adap-
tive interactive agent for route advice. Proceedings of the
Third International Conference on Autonomous Agents,
198–205. Seattle, WA: ACM Press.

Swartout, W. R.; and Moore, J. D. 1993. Explanation in sec-
ond generation expert systems. In J.-M. David, J.-P. Kriv-
ine, and R. Simmons, eds., Second generation expert sys-
tems. Berlin: Springer-Verlag.

Van Lent, M.; Fisher, W.; and Mancuso, M. 2004. An ex-
plainable artificial intelligence system for small-unit tac-
tical behavior. Proceedings of the Nineteenth National
Conference on Artificial Intelligence, 900–907. San Jose,
CA: AAAI Press.

Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence 7: 81–120.

Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explicabil-
ity and predictability for robot task planning. Proceedings
of the 2017 International Conference on Robotics and Au-
tomation, 1313–1320. Singapore.

Why Can’t You Do That HAL?
Explaining Unsolvability of Planning Tasks

Sarath Sreedharan1, Siddharth Srivastava1, David Smith2 , Subbarao Kambhampati1

1CIDSE, Arizona State University, Tempe, AZ 85281 USA
2PSresearch

ssreedh3@asu.edu, siddharths@asu.edu, david.smith@psresearch.xyz, rao@asu.edu

Abstract
Explainable planning is widely accepted as a pre-
requisite for autonomous agents to successfully
work with humans. While there has been a lot of
research on generating explanations of solutions to
planning problems, explaining the absence of so-
lutions remains a largely open and under-studied
problem, even though such situations can be the
hardest to understand or debug. In this paper, we
show that hierarchical abstractions can be used
to efficiently generate reasons for unsolvability of
planning problems. In contrast to related work on
computing certificates of unsolvability, we show
that our methods can generate compact, human-
understandable reasons for unsolvability. Empirical
analysis and user studies show the validity of our
methods as well as their computational efficacy on
a number of benchmark planning domains.

1 Introduction
The ability to explain the rationale behind a decision is widely
seen as one of the basic skills needed by an autonomous agent
to truly collaborate with humans. At the very least we would
want our autonomous assistants to be capable of explaining
why a particular action/plan was chosen to achieve some ob-
jective and be able to explain why they consider some objec-
tives to be unachievable. For example, consider an automated
taxi scheduling system. A user asks for a taxi to pick up her
and three of her friends and the service comes back by say-
ing that it is not possible, and recommends instead using two
different taxis. In this scenario, the user would want to know
why a single taxi can’t pick up all four of them.

Most earlier works in explanation generation for planning
problems have focused on the problem of explaining why
a given plan or action was chosen, but do not address the
problem of explaining the unsolvability of a given planning
problem. The few works that have tried to address unsolv-
ability have mostly looked at generating certificates or proofs
of unsolvability (cf. [Eriksson, Röger, and Helmert, 2018;
2017]) or identify some modification of the planning prob-
lem that could make the problem solvable, i.e, an excuse
for the unsolvability of the problem (c.f [Göbelbecker et al.,
2010]). Unfortunately the certificates/proofs considered by

these works are geared towards automatic verification rather
than human understandability and for complex domains ex-
cuses generated by such systems may not be enough to un-
derstand why a problem was unsolvable in the first place.

In this paper, we present a new approach for explaining
unsolvability of planning problems that builds on the well
known psychological insight that humans tend to decompose
sequential planning problems in terms of the subgoals they
need to achieve [Donnarumma, Maisto, and Pezzulo, 2016;
Cooper and Shallice, 2006; Simon and Newell, 1971]. We
will thus help the user understand the infeasibility of a given
planning problem by pointing out unreachable but necessary
subgoals. For example, in the earlier case, “Holding three pas-
sengers” is a subgoal that is required to reach the goal, but
one that can no longer be achieved due to new city regula-
tions. Thus the system could explain that the taxi can’t hold
more than two passengers at a time (and also notify the user
about the new city ordinance).

Unfortunately, this is not so straightforward, since by the
very nature of the problem, there exist no solutions and hence
its hard to extract meaningful non-trivial subgoals for the
problem. We can find a way around this issue by noting the
fact that the user is asking for an explanation for unsolvability
either due to a lack of understanding of the task or because of
limitations in their inferential capabilities. Therefore, we can
try to capture the user’s expectations by considering abstrac-
tions of the given problem. In particular, we use state abstrac-
tions to generate potential solutions and subgoals at higher
levels of abstractions. Such an approach was used by [Sreed-
haran, Srivastava, and Kambhampati, 2018] to compute ex-
planations for user queries attuned to the level of expertise of
the user.

In section 3, we present our basic framework and discuss
how we can identify the appropriate level of abstraction and
unachievable subgoals for an unsolvable classical planning
problem. In the real world, a more challenging version of this
problem arises when the user provides plan advice (which
may include temporal preferences) on the type of solutions
expected. In section 4, we will see how explaining unsolv-
ability of planning problems with plan advice (c.f [Myers,
1996]) could be seen as establishing unsolvability of planning
problems with additional plan constraints. This is a capabil-
ity that is necessary to capture the fact that these explana-
tions are being provided within the context of a conversation.

Figure 1: A sample abstraction lattice. The lattice consists
of models generated by projecting out rocks or soil samples.
Dark blobs are locations for soil samples, gray objects are
rocks, and the goal is marked in green. The problem is un-
solvable in the most concrete model but solvable in models
where rocks are projected out.

The presence of this additional plan advice could either re-
flect cases (1) where the original problem was solvable, but
the user’s requirements (i.e. expressed in the advice) renders
it unsolvable and (2) where the original problem was unsolv-
able and the user presents an outline for a solution in the form
of advice. Even in the second case, by taking into account
the human’s expected solution, we can provide a more tar-
geted explanation. Such additional advice are quite common
within the context of contrastive explanations [Miller, 2018],
where these advice specify alternative foils (in this case al-
ternative plans) expected by the user. By supporting refuta-
tion of such advice we also allow the possibility of leverag-
ing our approach for contrastive explanations. For evaluating
our approach, we will present a user study we ran to validate
the usefulness of such explanations for unsolvable problems
(with plan advice) and also note the computational efficiency
of our method for some standard planning benchmarks.

2 Background
We will assume that the autonomous agent uses a STRIPS
planning model [Fikes and Nilsson, 1971] that can be repre-
sented as a tuple of the formM = 〈F,A, I,G〉, where F is
a set of propositional fluents that define the state space SM
for the model, A gives the set of actions the robot has access
to, I defines the initial state and G the goal. A state S ∈ SM
corresponds to a unique value assignment for each state flu-
ent and can be represented by the set of fluents that are true
in that state. Each action a ∈ A is further defined by a tuple
a = 〈preca, addsa, delsa〉 and a plan is defined as an action
sequence of the form π = 〈a1, ..., an〉. A plan is said to be
valid for M, if the result of executing a plan from the ini-
tial state satisfies the goal (denoted as π(I) |=M G). For the
modelM, we will represent the set of all valid plans as ΠM.
Each planning modelM also corresponds to a transition sys-
tem T = 〈SM, I, SG, A, T 〉, where SG is the subset of SM
where the goal G is satisfied and T ⊆ SM × A × SM, such
that 〈S, a, S′〉 ∈ T (denoted as S a−→ S′) if S ⊆ preca and
a(S) = S′. Each valid plan has a corresponding path in the

transition system from I to some state in SG.
In this work, we will be focusing on state and action ab-

stractions induced by projecting out fluents. Thus a model
M2 is said to be an abstraction of M1 (denoted by M1 v
M2) if modelM2 can be formed fromM1 by projecting out
a set of fluents. Formally, M1 v M2 if there exists some
P ⊆ F , such that the transition system of M2 is defined
as T2 = 〈SM2

, I2,SG2
, A, T2〉. Where, for every S ∈ SM1

,
there exist a state S \ P ∈ SM2

, I2 = I \ P , SG2
is the

subset of SM2 that satisfy G′ = G \ P and for every transi-
tion 〈S, a, S′〉 ∈ T1, there exist 〈S \ P, a, S′ \ P 〉 ∈ T2. We
will denote an abstraction formed by projecting out P from
the model M as fP (M). An abstraction fP (M) is consid-
ered logically complete if for every π such that π(I) |=M G,
we have π(IfP (M)) |=fP (M) GfP (M). In this work, we will
only be looking at logically complete abstractions. For clas-
sical planning models, logically complete abstractions can be
formed by simply removing the abstracted out fluents from
the domain model and problem descriptions.

Sreedharan, Srivastava, and Kambhampati (2018) note that
given a modelM and a set of propositions P we can define
an abstraction lattice, denoted as LM,P = 〈M,E, `〉, where
each model in M is an abstraction ofM formed by project-
ing out some subset of fluents from P (where P ⊆ F) and
M ∈ M. There exist an edge 〈M1,M2〉 ∈ E with label
`(M1,M2) = p, if f{p}(M1) = M2, thus this structure
provides a way of capturing the ordering induced byv (where
elements higher up in the lattice are more abstract than the
ones at the bottom). Note that in the most general case, the
lattice need not be complete, that is |M| 6= 2|P |. In fact we
do not assume that there is a single most abstract supremum
but rather the structure could have multiple maximal elements
(thus making it a meet semi-lattice rather than a pure lattice).

For convenience, we will treat the abstraction function f
for a given lattice as invertible and use f−1P (M) to repre-
sent the unique concrete node in the lattice that could have
been abstracted (by projecting out P) to generate M. We
will refer to f−1P (M) as the concretization ofM for P . Fig-
ure 1 presents a simple conceptualization of an abstraction
lattice for the rover domain. The edges in the lattice corre-
spond to projecting out the presence of rocks or soil samples.
Earlier works have used such abstraction lattices to estimate
the user’s level of understanding of the given task, by search-
ing for the level of abstraction where an incorrect alternative
raised by the user (or foil) could be supported.

3 Our Approach
Before we start discussing the technical details of our ap-
proach, let us look at a possible explanatory scenario.

Example 1. Consider the following scenario where a rover
is tasked with collecting a rock sample and a soil sample
from the region illustrated in Figure 2. The rover can only tra-
verse the region via the waypoints marked on the map and its
maneuverability is affected by the conditions of the terrain.
The rover cannot easily traverse the region between P3 and
P4 without special precautions as the region is quite rocky.
Suppose a mission control operator is also keeping track of
the rover’s plan but may not have access to a map with the

same level of fidelity or may have incomplete knowledge of
the rover’s capabilities. The rover reports to the mission con-
troller that in fact the task can not be solved. The mission
control operator is confused by the rover’s response and could
even ask
“Why don’t you collect the rock sample from P4 and Soil sam-
ple from P7?”
Here if the rover wants to explain the reason as to why it

couldn’t achieve the goal a possible way would be to clarify
that certain parts of the map are hard to traverse (particularly
the region around the rock sample) and because of this issue
it can never reach the location of the rock sample. Thus the
explanation in this case consist of two distinct parts, infor-
mation about the problem (i.e traversability of certain paths)
and the required subgoal that can no longer be achieved in the
light of this new information. In the proceeding sections, we
will layout our framework and discuss how we could leverage
it to generate such explanations.

The input to our approach thus includes an unsolvable
problem MR = 〈FR, AR, IR, GR〉 (in the above example
this would correspond to the complete rover model) and an
abstraction lattice LMR,P = 〈M,E, `〉, where M represents
the space of possible models that could be used to capture the
human’s understanding of the task (i.e by assuming the user
may or may not be aware of the fluents in the set P ⊆ FR). In
Example 1, P could include fluents related traversability of
various paths or fluents related to various rover capabilities.
Given this setting, our method for identifying explanations,
includes the following steps

• Identify the level of abstraction at which the explanation
should be provided (Section 3.1)

• Identify a sequence of necessary subgoals for the given
problem that can be reasoned about at the identified level
of abstraction (Section 3.2)

• Identify the first unachievable subgoal in that sequence
(Section 3.3)

Intuitively, one could understand the three steps mentioned
above as follows. First, identify the level of detail at which un-
solvability of the problem needs to be discussed. The higher
the level of abstraction, the easier the user would find it to un-
derstand and reason about the task, but the level of abstraction
should be detailed enough that the problem is actually unsolv-
able there. In most cases, this would mean finding the highest
level of abstraction where the problem is still unsolvable.

Now even if the system was to present the problem at this
desired level of abstraction, the user may be unable to grasp
the reason for unsolvability. Again, our method involves help-
ing the human in this process by pointing out a necessary
subgoal (i.e., any valid solution to that problem must achieve
the subgoal) that can’t be achieved at the current abstraction
level. Thus the second point relates to the challenge of finding
a sequence of subgoals (defined by state fluents present at the
explanatory level) for a given problem. In the third step, we
try to identify the first subgoal in the sequence that is actually
unsolvable in the given level.

Given our approach, the final explanatory message pro-
vided to the user would include model information that brings

their understanding of the task to the required level and infor-
mation on the specific subgoals (and previous ones that need
to be achieved first) that can no longer be achieved. In cases
where the unachievable subgoals are hard to understand for-
mulas or large disjunctions, we can also use these subgoals
to produce exemplar plans in the more abstract models and
illustrate their failures alongside the unachievable subgoals.

3.1 Identifying the Minimal Level of Abstraction
Required for Explanation

Following [Sreedharan, Srivastava, and Kambhampati, 2018],
we will assume that the human’s understanding of the
task could be approximated by a model MH =
〈FH , AH , IH , GH〉, such that, the model is part of the ab-
straction lattice (MR @ MH and MH ∈ M). While the
earlier work is able to use alternative plan provided by the
user to identify the human model, we instead use the fact that
the user expected the problem to be solvable to identifyMH ,
i.e., ∃π, π(IMH

) |=MH
GMH

.
We now need to abstract this human model to a level where

the problem is unsolvable (i.e the explanation level) by pro-
viding information about a certain subset of fluents previously
missing from the human model (i.e information on their truth
values in the initial and goal state, and how they affect various
actions etc...). In the case of Example 1, this would include in-
formation on whether various paths are traversable and how
the traversability of a path is a precondition for the robot to
move across it. We will refer to the set of fluents that the hu-
man needs to be informed about as explanatory fluents (E)
and for Example 1, it will be E = {can traverse(?x, ?y)}.
Definition 1. Given a human model MH , we define a set
of propositions E to be explanatory fluents if f−1E (MH) is
unsolvable, i.e, |Πf−1

E (MH)| = 0.

Unfortunately, this is not an operational definition as we do
not have access toMH . Instead, we know thatMH must be
part of the lattice, and thus there exists a subset of the max-
imal elements of the lattice (denoted as Mabs) that is more
abstract thanMH . In this section, we will show how the ex-
planatory fluents for models in this subset of Mabs would sat-
isfyMH as well.

The first useful property to keep in mind is that if M1 is
more concrete than M2 then the models obtained by con-
cretizing each model with the same set of fluents would main-
tain this relation (although they may get concretized to the
same model), i.e.,

Proposition 1. Given models M1, M2 and a set of fluents
ε′, ifM1 vM2, then f−1ε′ (M1) v f−1ε′ (M2) .

Next, it can be shown that any given set of explanatory
fluents for an abstract model will be a valid explanatory fluent
set for a more concrete model

Proposition 2. Given modelsM1,M2, ifM1 v M2, then
any explanation E for M2 must also be an explanation for
M1.

To see why this proposition is true, let’s start from the
fact that f−1E (M1) v f−1E (M2) and therefore Πf−1

E (M1)
⊆

Πf−1
E (M2)

. From the definition of explanation we know that

Figure 2: The map for the rover mission planning problem. The rover is required to collect a rock sample and a soil sample and
then return to the original position P1. One of the rock samples is located in rough terrain (gray) that can not be traversed by
the rover. The mission control operator who is monitoring the plan is currently unaware of this detail.

the concretization with respect to explanatory fluents would
render the problem unsolvable (i.e |Πf−1

E (M2)
| = 0) and thus

|Πf−1
E (M1))

| must also be empty and hence E is an explana-
tion forM1.
Definition 2. Given an abstraction lattice L, let Mabs be its
maximal elements. Then the minimum abstraction set is de-
fined as Mmin = {M|M ∈Mabs ∧ |ΠM| > 0}.

Note that for any model M1 ∈ Mmin, MH v M1,
this means by Proposition 2, any explanation that is valid
for models in Mmin, should lead MH to a node where the
problem is unsolvable. Now we can generate the explanation
(even the optimal one) by searching for a set of fluents that
when introduced to the models M ∈ Mmin will render
the problem f−1E (M) unsolvable. In this work, we will
mostly consider the use of uniform cost search to find the
least costly set of explanatory fluent, where the cost of each
fluent reflects the cost of communicating information about
a particular fluent. In this case, the search state consists of
sets of models (with Mmin being the initial state), the actions
consist of the various fluent concretizations, the edges of
the lattice define the successor functions and the goal test
involves verifying whether the problem is solvable in each
possible model in the current state.

3.2 Generating Subgoals of a Given Problem
Note that it would be hard to identify non-trivial subgoals for
the given problem in the node at which the problem was found
to be unsolvable (i.e f−1E (Mmin)) since there are no valid
plans in that model. Fortunately, we can use models more ab-
stract than f−1E (Mmin) to generate such subgoals. We will
use planning landmarks [Hoffmann, Porteous, and Sebastia,
2004] extracted fromM, where |ΠM| > 0, as subgoals. Intu-
itively, state landmarks (denoted as Λ = 〈Φ,≺〉) for a model
M can be thought of as a partially ordered set of formulas,
where the formulas and the ordering need to be satisfied by
every plan that is valid in M. We will only be considering
sound orderings (c.f [Richter, Helmert, and Westphal, 2008])
between landmarks, namely, (1) natural orderings (≺nat) -
φ ≺nat φ′, then φ must be true before φ′ is made true in ev-
ery plan, (2) necessary orderings (≺nec) - if φ ≺nec φ′ then

φ must be true in the step before φ′ is made true every time
and (3) greedy necessary orderings (≺gnec) - if φ ≺gnec φ′
then φ must be true in the step before φ′ is made true the first
time. The landmark formulas may be disjunctive, conjunctive
or atomic landmarks.

Our use of landmarks as the way to identify subgoals is
further justified by the fact that logically complete abstrac-
tions conserve landmarks. Formally

Proposition 3. Given two models M1 and M2, such that
M1 v M2, let Λ1 = 〈Φ1,≺1〉 and Λ2 = 〈Φ2,≺2〉 be the
landmarks ofM1 andM2 respectively. Then for all φ1i , φ

1
j ∈

Φ1, such that φ1i �1 φ
1
j (where ≺1 is some sound ordering),

we have φ2i and φ2j in Φ2, where φ1i �2 φ
1
j , φ1i |= φ2i and

φ1j |= φ2j .

This is true because φ2i ≺1 φ2j holds over all the plans
that are valid in M2, and therefore must also hold over all
plans inM1. Though inM1 these landmark instances may be
captured by more constrained formulas, and additionallyM1

may also contain landmarks that were absent fromM2. Now
if we can show that in a particular model, a landmark gener-
ated from a more abstract model is unachievable (or the order-
ing from the previous level is unachievable) then φ1∗ becomes
⊥ (thereby meeting the above requirement). Thereafter, for
any model more concrete thanM2, the formula correspond-
ing to that landmark must be ⊥. In other words, if for any
model a landmark is unachievable, then that landmark can’t
be achieved in any models more concrete than the current one.

So given the explanatory level, we can move one level up
in the lattice and make use of any of the well established
landmark extraction methods developed for classical plan-
ning problem to generate a sequence of potential subgoals for
MR.

3.3 Identifying Unachievable Sub-Goals
Now we need to find the first subgoal from the sequence that
can no longer be achieved in the models obtained by apply-
ing the explanatory fluents (f−1E (Mmin)) which will then
be presented to the user. For example, in the case of Figure
1, the unachievable subgoal would correspond to satisfying
at rover(5, 4) (marked in red in M4).

It is important to note that finding the first unachievable
subgoal is not as simple as testing the achievability of each
subgoal at the abstraction level identified by methods dis-
cussed in section 3.1. Instead, we need to make sure that
each subgoal is achievable while preserving the order of all
the previous subgoals. To test this we will introduce a new
compilation that allows us to express the problem of testing
achievement of a landmark formula as a planning problem.
Consider a planning modelM and the landmarks Λ = 〈Φ,≺〉
extracted from some model M′, where M @ M′. We will
assume that the formulas in Φ are propositional logic for-
mulas over the state fluents and are expressed in DNF. Each
φ ∈ Φ can be represented as a set of sets of fluents (i.e, φ =
{c1, ..., ck} and each ci set takes the form ci = {p1, ..pm}),
where each set of fluents represent a conjunction over those
fluents. For testing the achievability of any landmark φ ∈ Φ,
we make an augmented model Mφ = 〈Fφ, Aφ, Iφ, Gφ〉,
such that the landmark is achievable iff |ΠMφ

| > 0. The
model Mφ can be defined as follows: Fφ = F ∪ Fmeta,
where Fmeta contains new meta fluents for each possible
landmark φ′ ∈ Φ of the form

• achieved(φ′) keeps track of a landmark being achieved
and never gets removed

• unset(φ′) Says that the landmark has not been achieved
yet, usually set true in the initial state unless the land-
mark is true in the initial state

• first time achieved(φ′) Says that the landmark has
been achieved for the first time. This fluent is set true
in the initial state if the landmark is already true there

The new action set Aφ, will contain a copy of each action
in A. For each new action corresponding to a ∈ A, we add
the following new effects to track the achievement of each
landmark

• for each φ′ ∈ Φ if the action has existing add effects for
a subset of predicates ĉj for a cj ∈ φ′, then we add the
conditional effects cond1(φ′) → {achieved(φ′)} and
cond2(φ′)→ {first time achieved(φ′)}, where
cond1(φ′) = cj \ ĉj ∪ {φ̂|φ̂ ∈ Φ ∧ (φ̂ ≺nec φ′)} ∪
{achieved(φ̂)|φ̂ ≺nat φ′} and
cond2(φ′) = cond1(φ′)∪{φ̂|φ̂ ≺gnec φ′}∪{unset(φ)}

• We add a conditional delete effect to every ac-
tion of the form first time achieved(φ′) →
(not(first time achieved(φ′)))

The new goal would be defined as Gφ =
{first time achieved(φ)}.

This formulation allows us to test each landmark in the
given sequence and find the first one that can no longer be
achieved. To ensure completeness, we will return the final
goal if all the previously extracted landmarks are still achiev-
able in f−1E (Mmin). Now given an ordered set of landmarks,
we can identify the first unsolvable landmark by testing the
solvability of the Fφ for each landmark in the order they ap-
pear in the sequence.

Since the above formulation is designed for DNF, we can
generate compilation for cases where the landmarks use ei-

ther un-normalized formulas or CNF by converting them first
into DNF formulas.

4 Planning Problems with Plan Advice
Let us now discuss how we could extend the methods pre-
sented in earlier sections to cases where the user provides plan
advice. In such cases,the user imposes certain restrictions on
the kind of solution they expect, either as an alternative to
the solution the system may come up with on its own or as
a guide to help the system come up with solutions when it
claims unsolvability.

As pointed out in [Myers, 1996], such advice can be
compiled into plan constraints in the original problem. A
number of approaches have been proposed to capture and
represent plan constraints [Bacchus and Kabanza, 2000;
Nau et al., 2001; Kambhampati, Knoblock, and Yang, 1995;
Baier and McIlraith, 2006], and each of these representational
choices has its unique strengths and weaknesses. In general,
we can see that these plan constraints as specify a partition-
ing of the space of all valid plans to either acceptable (i.e it
satisfies the constraints) or unacceptable. So we can define,
constraints as follows

Definition 3. The partition specified by a constraint σ on a
given set of plans that is specified by a membership function
σ : Π→ [0, 1], where Π is the set of all plans.

We will slightly abuse notation and for a given set of plans
Π̂ we will use σ(Π′) to denote {π|π ∈ Π̂ ∧ σ(π) = 1} (i.e
the subset of Π′ that satisfies the constraint). If we can as-
sume some upper bound on the possible length of plans in
σ(ΠM) (which is guaranteed when we restrict our attention
to non-redundant plans for standard classical planning prob-
lems), then we can assert that there always exists a finite state
machine that captures the space of acceptable plans

Proposition 4. Given a constraint σ and a modelM, there
exists a finite state automaton Fσ,M = 〈Σ,SFσ,M , S0, δ, E〉,
where Σ is the input alphabet, SFσ,M defines the FSA states,
S0 is the initial state, δ is the transition function and E is the
set of accepting states, such that σ(ΠM) = L(Fσ,M)∩ ΠM,
where L(Fσ,M) is the set of strings accepted by Fσ,M.

The existence of Fσ,M can be trivially shown by consider-
ing an FSA that has a path for each unique plan in Fσ,M. We
believe that this formulation is general enough to capture al-
most all of the plan constraint specifications discussed in the
planning literature, including LTL based specifications, since
for classical planning problems these formulas are better un-
derstood in terms of LTLf [De Giacomo and Vardi, 2015]
which can be compiled into a finite state automaton.

We can use Fσ,M to build a new model σ(M) such that
a plan is valid in σ(M) if and only if the plan is valid
for M and satisfies the given specification σ, i.e., ∀π, π ∈
Πσ(M) iff π ∈ σ(ΠM)

For M = 〈F,A, I,G〉, we can define the new model
σ(M) = 〈Fσ, Aσ, Iσ, Gσ〉 as follows

• Fσ = F ∪ {in-state-{S}|S ∈ SFσ,M}
• Aσ = A ∪Aδ
• Iσ = I ∪ {in-state-{S0}}

Figure 3: The graph compares the time taken to generate the
explanation for three of the domains for increasing size of
lattices.

• Gσ = G ∪ {in-state-{S}|S ∈ E}
Aδ are the new meta actions responsible for simu-

lating the transitions defined by δ : SFσ,M × Σ →
pow(SFσ,M). For example, if δ(S1, a) = {S1, S2}, where
a corresponds to an action in A, then we will have two
new actions a1S1,a

= 〈preca ∪ {in-state-{S1}}, addsa ∪
{in-state-{S2}}, delsa ∪ {in-state-{S1}}〉 and a2S1,a

=

〈preca ∪ {in-state-{S1}}, addsa, delsa}〉. In cases like LTL,
the FSA state transitions may be induced by the satisfaction
of some formula, so the new meta action may have precondi-
tions corresponding to that formula, with no other effects but
changing the fluent corresponding to the state transition.

The above formulation merely points out that there always
exists a way of generating σ(M) from the given specification
σ and M. For many constraint types, there may exist more
efficient ways of generating models that satisfy the require-
ments of σ(M).

Once we have access to σ(M), we should be able to use the
methods discussed in earlier sections to explain unsolvability
of σ(M) and hence why the constraint isn’t feasible. To facil-
itate such explanation, we will build an abstraction lattice for
the constrained problems LσM,P such that P ∩(Fσ\F) = φ,
i.e the abstraction lattice only affects the fluents from the orig-
inal problem and not the new ones introduced as part of the
compilation. In fact, we can induce such a lattice by consider-
ing the lattice generated for the original problem and then re-
placing each node in the lattice with the corresponding com-
piled problem, to see why this would induce a valid abstrac-
tion lattice, consider the following property
Proposition 5. Given models M1, M2 and a constraint
specification σ, ifM1 vM2, then σ(M1) v σ(M2).

To see why this is true, just assume that the reverse was
true, that σ(M2) is not a logically complete abstraction of
σ(M1). This means that there are plans in Πσ(M1) that are
not part of Πσ(M2). From the definition of σ(M2), we know
that Πσ(M2) = ΠM2 ∩ L(Fσ). If there exist a π ∈ Πσ(M1),
such that π 6∈ Πσ(M2), then π 6∈ ΠM2 . Which meansM1 6v
M2, hence contradicting our assumptions.

Revisiting Example 1, the question asked by the user could
be seen as an advice, where the corresponding constraint
covers all plans where the rover performs the actions col-
lect rock sample P4, collect soil sample P7, irrespective of

the exact position and order in which the actions appears in
the plan. More generally, we could think of this plan advice as
being a special case of advice where the user wants to ensure
presence of certain actions in the plan with some partial or-
dering among them (eg: “Why don’t you pickup block B and
then C?”, “Make sure that you have cleared Room1 before
you move on to Room2 and Room3” etc..). Such advice could
be represented as partial plans [Kambhampati, Knoblock, and
Yang, 1995], which in general can be captured as a partially
ordered multiset of the form1 π̂ = 〈Â,6〉 , where Â is a mul-
tiset over grounded actions and 6 defines ordering constraints
over these grounded actions. A plan π = 〈a1, ..., an〉 is said
to be a candidate plan for the given partial plan π̂, if there
exists a mapping function µ : Â → [1, |π|] that maps each
action in a ∈ Â to a position in the plan such that a = aµ(a)
and if a < b for a, b ∈ Â, then µ(a) < µ(b). Such partial
plans can be fairly easily compiled into a classical planning
model (such that it satisfies σ(M)) by extending the com-
pilation methods discussed in [Ramırez and Geffner, 2010],
without relying on an intermediate finite state machine.

The corresponding partial plan for the question specified
above would be
π̂ = 〈{collect rock sample P4, collect soil sample P7}, 〉
Let us assume that in this case the observer could be un-
aware of certain domain constraints such as the rover’s in-
ability to traverse certain regions on the map the fact that not
all rovers are capable of collecting rock and soil samples or
that they are not always equipped to store these samples. In
this case, possible user models can be captured by a lattice
build using the following fluents P = {(can traverse ?x ?y),
(equipped for soil sample ?r), (equipped for rock sample ?r),
(store of ?r)}. Now our approach would identify the user need
to be made aware of the fact that not all regions of the map are
equally traversable (i.e inform the user about can traverse ?x
?y) and how its a precondition for move action), furthermore
given this property the robot can no longer reach the waypoint
4 which is required to complete this task (i.e the unreachable
landmark is (at rover0 waypoint4)).

5 Evaluations
5.1 User Studies
Our first concern with evaluating explanations based on land-
marks was to establish that they constitute meaningful expla-
nations for naive users. As a simple alternative to our explana-
tions, we consider providing to the user a set of potential solu-
tions (generated from a higher level of abstraction) and their
individual failures. For the study, we recruited around 120
master turkers from Amazon’s Mechanical Turk and tested
the following hypotheses

• H1 - Users prefer concise explanations over ones that
enumerate a set of possible candidates for a given piece
of plan advice

1We are presenting a simplified definition of a partial plan.
The full definition allows for the representation of more complex
constraints than mere ordering constraints, such as contiguity con-
straints and interval protection constraints.

Domain Name |P | Average Runtime (secs) Explanation Cost Cost of explaining MR

Blocksworld 4 8.141 11.6 30.2
Satellite 8 19.15 6 43.6
Depots 5 20.229 13 51
Rover 8 263.635 7.5 15.75
Storage 7 50.348 20 55.8
Over-Rover∗ 8 2047.360 29.8 92.6
Over-tpp∗ 8 1065.542 842.8 881.2
Bottleneck∗ 3 504.431 60.8 66.2

Table 1: Table showing runtime for explanations generated for standard IPC domains. The explanation costs capture the number
of unique model updates (changes in effects/precondition etc..) corresponding to each explanation

• H2 - Users prefer concise explanations that contain in-
formation about unachievable landmarks over ones that
only show the failure of a single exemplary plan

For the hypotheses, we presented the study participants with
a sample dialogue between two people over a logistics plan
to move a package from one location to another. The dia-
logue included a person (named Bob) presenting a plan to
another (named Alice), and Alice asks for an alternative pos-
sibility (i.e specifies a constraint on the solution). Now the
challenge for Bob is to explain why the constrained problem
is unsolvable. For example, in one example Bob presents a
rather convoluted plan that involves the package being trans-
ferred through multiple trucks to a train and then to the final
destination. This leads to Alice asking the package to be de-
livered via an airplane.

For H1, in addition to some model information that Bob
was unaware of, the potential explanations included either (a)
the information on the unachievable landmark, (b) landmark
information with the failure details of a specific exemplary
plan or (c) a set of plans that satisfy the constraints and their
corresponding failures. For the earlier example this meant
Bob explains to Alice the limited availability of Truck fuel
and (a) the impossibility of getting the package to the airport
or (b) the the impossibility of getting the package to the air-
port and a specific plan (eg: truck1 picks up package moves
to location two then to three ...) along with its point of failure
(eg: truck1 runs out of fuel when it reaches location three) or
(c) three example plans involving various trucks trying to get
the package to the airport and their specific points of failures
(each of which fails at different steps but before reaching the
airport).

For this study, we used 45 participants and each participant
was assigned one of three possible maps for each hypothesis
and was paid $1.25 for 10 mins. We used a control question
to filter participant responses, so as to ensure their quality.
Out of the 39 remaining responses, we found 94.8% of users
chose to select the more concise explanation (i.e (a) or (b)),
and 51.28% of the users chose explanations that involved just
landmarks.

For H2, we used 75 participants and presented each par-
ticipant with explanations that include (a) just landmark in-
formation, (b) landmark information with failure details of
an exemplary plan and (c) just the exemplary plan failure.
Here participants were paid $1 for 10 mins for H2 as the ex-
planatory options were much simpler. After filtering using

the control question, we found that out of 60 valid entries
75.4% of participants preferred explanations that included
landmark information ((a) or (b)) and 44.2% wanted both
landmarks and exemplary plan (i.e (b)). The supplementary
file at http://bit.ly/2HQ5sTv contains more details
on the study setup.

5.2 Empirical Studies
In this section, we will present the results of an empirical
evaluation of the computational characteristics of our ap-
proach. One big concern with the methods discussed in this
work is the fact that they involve solving multiple planning
problems. Thus we were interested in identifying the run-
time for generating explanations on a set of standard planning
benchmarks.

To evaluate our methods, we considered eight planning do-
mains and chose five problem instances for each of the do-
mains. For each domain, we used a subset of the domain
predicates to generate the abstraction lattice (i.e we set the
subset as the set of fluents P used to define the lattice). The
first five domains and their problem instances consisted of
standard IPC domains and problem instances used in previ-
ous IPC competitions [International Planning Competition,
2011]. Each problem instance was made unsolvable by in-
cluding plan constraints that avoid a specific landmark of the
original problem. The constraints were coded using domain
control programs [Baier, Fritz, and McIlraith, 2007] of the
form
while ¬φ ∧ ¬(goal completed)
do any
done

Where φ is the landmark formula and (goal completed)
is the goal fluent (generated by a new goal action whose
preconditions are the original goals of the problem). The con-
straints ensure that any valid plan must avoid the landmark φ
and thereby rendering it unsolvable. The next three domains
were selected from the set used for the 2016 unsolvability
competition [Unsolvability International Planning Competi-
tion, 2016] (these domains are marked with an asterix in the
results table). All instances were run with a timeout of 100
minutes (all problems were solvable under this time limit) and
all landmarks were generated using the fast-downward imple-
mentation of [Keyder, Richter, and Helmert, 2010] (where we
set the subset sizes to one for the first five domains and to two
for the rest).

Table 1 presents the results of our tests on these domains.
It shows the number of fluents used to generate the lattice
(|P |), the average runtime, the cost of the generated expla-
nations and the cost of presenting the most concrete model
to the user. For each scenario, we created a complete lattice
for all the fluents considered for abstraction (i.e |M| = 2|P |).
The cost of the explanation captures the amount of informa-
tion to be provided to the user as part of the explanation. This
could include information regarding the various explanatory
fluents and is here captured roughly by the number of places
within the domain definition where these fluents appear. The
cost also reflects the inferential overhead demanded from the
user (since providing more information translates to the user
needing to understand the domain at a much more concrete
level).

For a sample explanation, consider the overconstrained
rover domain, where the rovers’ actions are limited by their
energy levels and the energy of the rover isn’t enough to fin-
ish the task. In one of the instances where the rover energy
level is at 33 and the original problem had a goal consisting
of eight propositions (each referring to the need for commu-
nicating a particular soil sample, rock sample or sending an
image for different objectives), our approach was able to iden-
tify that the user needs to understand fluents related to energy
((energy ?x ?y) and (energycost ?x ?y ?z)) and identified two
subgoals out of the eight that it could not achieve.

Figure 3 presents the variations in average runtime for three
of the domains as the size of the lattice were increased (the X-
axis represents the number of fluents that were used to build
the lattice and Y the runtime in seconds). Note that, in gen-
eral, the runtime increases as the lattice size increase due to
the increase in the search space, but in all three domains there
are points where the runtime decrease when the lattice size in-
creases. This is expected since with an increase in the size of
lattice, the planning problems whose unsolvability are being
tested becomes simpler.

6 Related Work
As discussed earlier, our methods for identifying the level of
explanations are based on the expertise level modeling ap-
proaches introduced in [Sreedharan, Srivastava, and Kamb-
hampati, 2018]. These two works are quite closely connected
and in fact, the contrastive explanations of the type studied in
the earlier paper, where the user presents alternative plans (i.e
the foils for the explanations) that are then refuted by the sys-
tem, is a special case of our approach for handling problems
with plan advice. The problems studied in that earlier paper
can be thought of as capturing cases where the advice only
allows for a single plan. Also, one could argue that people
would be more comfortable giving advices as foils rather than
full plans. Part of our explanations also try to reveal to the
user information about the current task that was previously
unknown to them. Thus our methods could also be under-
stood as an example of explanation as model-reconciliation
[Chakraborti et al., 2017]. Since our methods use abstrac-
tions, our approach doesn’t make too many demands on the
inferential capabilities of the user and hence can be applied
to much larger and more complex domains.

Another closely related direction has been the work done
on explaining unsynthesizability of hybrid controllers for a
given set of high-level task specifications [Raman and Kress-
Gazit, 2013]. The work tries to identify the subformulas of
the given specification that lead to the unsynthesizability.
This particular approach is specific to the planning frame-
work detailed in [Finucane, Jing, and Kress-Gazit, 2010] and
the objective of the work parallels the goals of work like
[Göbelbecker et al., 2010].

Outside of explanation generation, the work done in the
model checking community is closely related to our current
problem [Grumberg and Veith, 2008]. In fact, the hierarchical
approach to identifying a model that can invalidate the given
foil specification, can be seen as a special case of the CE-
GAR based methods studied in the model-checking commu-
nity [Clarke et al., 2000]. Most work in this field focuses on
developing methods for identifying whether a given program
meets some specifications and failures to meet specification
are generally communicated via counterexamples.

Another related problem is that of identifying whether a
given problem is unsolvable. In our setting, we assume that
the system is capable of correctly identifying whether a given
problem is unsolvable or not and in general this can be a time
consuming process. Thankfully the problem of efficiently
identifying whether a given planning problem is unsolvable is
an active research area (cf. [Steinmetz and Hoffmann, 2017;
Kolobov, Weld, and others, 2010]) and solutions to this prob-
lem can be easily leveraged by our approach to improve the
overall efficiency of the system.

7 Conclusion and Future Directions
The work presented in this paper investigates the problem of
generating explanations for unsolvability of a given planning
problem. We also saw how the same methods apply when
dealing with problems with plan constraints. In addition to
extending these methods to more expressive domains, an in-
teresting extension would be to try tackling cases where the
current problem is solvable but all the solutions are too ex-
pensive. While this additional cost threshold could be seen as
a constraint, the setting becomes a lot more interesting when
the action costs are affected by the abstractions (c.f state de-
pendent costs [Geißer, Keller, and Mattmüller, 2016]). With
respect to contrastive explanations, this would correspond to
cases where the alternative posed by the user is more expen-
sive than the plan proposed by the robot. Finally, an obvious
challenge to fully realize this method in practical scenarios
is to develop methods to convert user questions to plan con-
straints. Methods like [Tenorth et al., 2010] can be used to
convert natural language statements to constraints like partial
plans. Expert users can also directly write LTL and procedu-
ral programs as a way of interrogating the system.

Acknowledgments
This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-2840,
the AFOSR grant FA9550-18-1-0067, the NASA grant
NNX17AD06G, NSF grant 1844325 and a JP Morgan AI
Faculty Research grant.

References
[Bacchus and Kabanza, 2000] Bacchus, F., and Kabanza, F.

2000. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence 116(1-
2):123–191.

[Baier and McIlraith, 2006] Baier, J. A., and McIlraith, S. A.
2006. Planning with first-order temporally extended goals
using heuristic search. In AAAI, 788–795.

[Baier, Fritz, and McIlraith, 2007] Baier, J. A.; Fritz, C.; and
McIlraith, S. A. 2007. Exploiting procedural domain con-
trol knowledge in state-of-the-art planners. In ICAPS.

[Chakraborti et al., 2017] Chakraborti, T.; Sreedharan, S.;
Zhang, Y.; and Kambhampati, S. 2017. Plan explana-
tions as model reconciliation: Moving beyond explanation
as soliloquy. In IJCAI.

[Clarke et al., 2000] Clarke, E.; Grumberg, O.; Jha, S.; Lu,
Y.; and Veith, H. 2000. Counterexample-guided abstrac-
tion refinement. In International Conference on Computer
Aided Verification, 154–169. Springer.

[Cooper and Shallice, 2006] Cooper, R. P., and Shallice, T.
2006. Hierarchical schemas and goals in the control of
sequential behavior. Psychological Review.

[De Giacomo and Vardi, 2015] De Giacomo, G., and Vardi,
M. Y. 2015. Synthesis for ltl and ldl on finite traces. In
IJCAI, volume 15, 1558–1564.

[Donnarumma, Maisto, and Pezzulo, 2016] Donnarumma,
F.; Maisto, D.; and Pezzulo, G. 2016. Problem solving
as probabilistic inference with subgoaling: explaining
human successes and pitfalls in the tower of hanoi. PLoS
computational biology 12(4):e1004864.

[Eriksson, Röger, and Helmert, 2017] Eriksson, S.; Röger,
G.; and Helmert, M. 2017. Unsolvability certificates for
classical planning. In ICAPS.

[Eriksson, Röger, and Helmert, 2018] Eriksson, S.; Röger,
G.; and Helmert, M. 2018. A proof system for unsolv-
able planning tasks. In ICAPS.

[Fikes and Nilsson, 1971] Fikes, R. E., and Nilsson, N. J.
1971. Strips: A new approach to the application of the-
orem proving to problem solving. Artificial intelligence
2(3-4):189–208.

[Finucane, Jing, and Kress-Gazit, 2010] Finucane, C.; Jing,
G.; and Kress-Gazit, H. 2010. Ltlmop: Experimenting
with language, temporal logic and robot control. In IROS,
1988–1993. IEEE.

[Geißer, Keller, and Mattmüller, 2016] Geißer, F.; Keller, T.;
and Mattmüller, R. 2016. Abstractions for planning with
state-dependent action costs. In ICAPS.

[Göbelbecker et al., 2010] Göbelbecker, M.; Keller, T.; Eye-
rich, P.; Brenner, M.; and Nebel, B. 2010. Coming up with
good excuses: What to do when no plan can be found. In
ICAPS.

[Grumberg and Veith, 2008] Grumberg, O., and Veith, H.
2008. 25 years of model checking: history, achievements,
perspectives, volume 5000. Springer.

[Hoffmann, Porteous, and Sebastia, 2004] Hoffmann, J.;
Porteous, J.; and Sebastia, L. 2004. Ordered landmarks in
planning. JAIR 22:215–278.

[International Planning Competition, 2011] International
Planning Competition. 2011. IPC Competition Domains.
https://goo.gl/i35bxc.

[Kambhampati, Knoblock, and Yang, 1995] Kambhampati,
S.; Knoblock, C. A.; and Yang, Q. 1995. Planning as
refinement search: A unified framework for evaluating
design tradeoffs in partial-order planning. Artificial
Intelligence 76(1):167–238.

[Keyder, Richter, and Helmert, 2010] Keyder, E.; Richter,
S.; and Helmert, M. 2010. Sound and complete landmarks
for and/or graphs. In ECAI.

[Kolobov, Weld, and others, 2010] Kolobov, A.; Weld, D.;
et al. 2010. Sixthsense: Fast and reliable recognition of
dead ends in mdps. In AAAI.

[Miller, 2018] Miller, T. 2018. Explanation in artificial in-
telligence: Insights from the social sciences. Artificial In-
telligence.

[Myers, 1996] Myers, K. L. 1996. Advisable planning sys-
tems. Advanced Planning Technology 206–209.

[Nau et al., 2001] Nau, D.; Cao, Y.; Lotem, A.; and Munoz-
Avila, H. 2001. The shop planning system. AI Magazine
22(3):91.

[Raman and Kress-Gazit, 2013] Raman, V., and Kress-
Gazit, H. 2013. Towards minimal explanations of
unsynthesizability for high-level robot behaviors. In
IROS, 757–762. IEEE.

[Ramırez and Geffner, 2010] Ramırez, M., and Geffner, H.
2010. Probabilistic plan recognition using off-the-shelf
classical planners. In AAAI, 1121–1126.

[Richter, Helmert, and Westphal, 2008] Richter, S.; Helmert,
M.; and Westphal, M. 2008. Landmarks revisited. In
AAAI, volume 8, 975–982.

[Simon and Newell, 1971] Simon, H. A., and Newell, A.
1971. Human problem solving: The state of the theory
in 1970. American Psychologist 26(2):145.

[Sreedharan, Srivastava, and Kambhampati, 2018]
Sreedharan, S.; Srivastava, S.; and Kambhampati, S.
2018. Hierarchical expertise-level modeling for user
specific contrastive explanations. In IJCAI.

[Steinmetz and Hoffmann, 2017] Steinmetz, M., and Hoff-
mann, J. 2017. Search and learn: On dead-end detectors,
the traps they set, and trap learning. In IJCAI, 4398–4404.

[Tenorth et al., 2010] Tenorth, M.; Nyga, D.; Beetz, M.; et al.
2010. Understanding and executing instructions for every-
day manipulation tasks from the world wide web. In ICRA.

[Unsolvability International Planning Competition, 2016]
Unsolvability International Planning Competi-
tion. 2016. IPC Competition Domains. https:
//unsolve-ipc.eng.unimelb.edu.au/.

(How) Can AI Bots Lie?
A Formal Perspective on the Art of Persuasion

Tathagata Chakraborti
IBM Research AI

Cambridge MA 02142 USA
tchakra2@ibm.com

Subbarao Kambhampati
Arizona State University
Tempe AZ 85281 USA

rao@asu.edu

Abstract

Recent work on explanation generation (Chakraborti et al.
2017) for decision-making problems has viewed the explana-
tion process as one of model reconciliation where an AI agent
brings the human mental model (of its capabilities, beliefs
and goals) to the same page with regards to a task at hand.
This formulation succinctly captures many possible types of
explanations, as well as explicitly addresses the various prop-
erties – e.g. the social aspects, contrastiveness and selective-
ness – of explanations (Miller 2018) studied in social sciences
among human-human interactions. However, it turns out that
the same process can be hijacked into producing “alternative
explanations” – i.e. explanations that are not true but still sat-
isfy all the properties of a proper explanation. In previous
work (Chakraborti and Kambhampati 2019), we have looked
at how such explanations may be perceived by the human in
the loop, and alluded to one possible way of generating them.
In this paper, we go into more details of this curious feature
of the model reconciliation process and discuss similar impli-
cations to the overall notion of explainable decision-making.

The Model Reconciliation Process
One of the root causes1 for the need of an explanation is that
of model differences between the human and the AI agent.
This is because, even if an agent makes the best decisions
possible given its model, they may appear to be suboptimal
or inexplicable if the human has a different mental model of
its capabilities, beliefs and goals. Thus, it follows that the ex-
planation process, whereby the AI agent justifies its behavior
to the human in the loop, is one of model reconciliation.

The Model Reconciliation Process 〈MR,MR
h , π〉 takes in

the agent model MR, the human mental model of it MR
h ,

and the agent decision π which is optimal in MR as inputs
and produces a model M̄R

h where π is also optimal.

• An Explanation ε is the model difference M̄R
h ∆MR

h .

Thus, by setting the mental model M̄R
h ← MR

h + ε
(through means of some form of interaction / communica-
tion), the human cannot come up with a better foil or deci-
sion π̂, and hence we say that the original decision π has

1Considering the computational capability of the human, this is
the only cause for an explanation.

been explained. This is referred to as the contrastive prop-
erty of an explanation. This property is also the basis of
persuasion since the human, given this information, cannot
come up with any other alternative to what was done.

So how do we compute this model update? It turns out
that there are several possibilities (Chakraborti et al. 2017),
many of which have the contrastive property.

Minimal Explanations These minimize the size of an ex-
planation and ensure that the human cannot find a better foil
using the fewest number of model updates. These are re-
ferred to as minimally complete explanations or MCEs.

εMCE = arg min M̄R
h ∆MR

h

Monotonic Explanations It turns out that MCEs can be-
come invalid on updating the mental model further, while
explaining a later decision. Minimally monotonic explana-
tions or MMEs, on the other hand, maintain the notion of
minimality as before but also ensure that the given decision
π never becomes invalid with further explanations.

εMME = arg min M̄R
h ∆MR

h such that

any MR \ M̄R
h + ε is a solution to 〈MR, M̄R

h , π〉

Alternative Explanations
So far, the agent was only explaining its decision (1) with
respect to and (2) in terms of what it knows to be true. Con-
straint (1) refers to the fact that valid model updates consid-
ered during the search for an explanation were always to-
wards the target model MR which is, of course, the agent’s
belief of the ground truth. This means that (2) the content
of the model update is also always grounded in (the agent’s
belief of) reality. In the construction of lies or “alternative
facts” to explain, we start stripping away at these two con-
siderations. There may be many reasons to favor them over
traditional explanations:
- One could consider cases where team utility is improved

because of a lie. Indeed, authors in (Isaac and Bridewell
2017) discuss how such considerations makes it not only
preferable but also necessary that agents learn to deceive.

- A specific case of the above can be seen in terms of dif-
ficulty of explanations – a lie can lead to an explanation
that is shorter and/or easier to explain... or are more likely
to be accepted by the human.

Lies of Omission
These deal with cases when the agent provides a model up-
date that negates parts of its ground truth – e.g. saying it
does not have a capability it actually has. This is, in fact,
a curious outcome of the non-monotonicity of the model
reconciliation process. Consider the case where the initial
estimate of the mental model is empty or φ – i.e. we start
by assuming that the human has no expectations of the
agent. Furthermore, let the minimally complete and mini-
mally monotonic explanations for the model reconciliation
process 〈MR, φ, π〉 produce intermediate models MR

MCE

and MR
MME respectively. Now, imagine if the actual mental

model MR
h lies somewhere between2 MR

MCE and MR
MME .

Then, it follows that, if we start making model updates to-
wards an empty model in the direction opposite to the real
model MR, we can get to an explanation MR

h \ MR
MCE

which involves the agent stating that its model does not con-
tain parts which it actually does.
• A Lie of Omission can emerge from the model reconcili-

ation process 〈φ,MR
h , π〉.

A solution to this particular model reconciliation process
may not exist – i.e. a lie of omission only occurs when
the initial mental model lies between MR

MCE and MR
MME .

However, they happen to be the easiest to compute due to
the fact that they are constrained by a target model (which is
empty) and do not requite any “imagination”. More on this
when we discuss lies of commission.

Lies of Commission
In lies of omission, the agent omitted constraints in its model
that actually existed. It did not make up new things (and hav-
ing the target model asMR in the original model reconcilia-
tion process prevented that). In lies of commission, the agent
can make up new aspects of its decision-making model that
do not belong to its ground truth model. Let M be the space
of models induced by MR and MR

h .3 Then:
• A Lie of Commission can emerge from the model recon-

ciliation process 〈M,MR
h , π〉 where M ∈M.

We have dropped the target here from being MR to
any possible model. Immediately, the computational prob-
lem arises: the space of models was rather large to begin
with – O(2|M

R∆MR
h |) – and now we have an exponentially

larger number of models to search through without a target
– O(2|M

R|+|MR
h |). This should be expected: after all, even

for humans, computationally it is always much easier to tell
the truth rather than think of possible lies.4

2As per the definition of an MME, if the mental model is be-
tween the MME and the agent model, then there is no need for an
explanation since optimal decisions in those models are equivalent.

3This consists of the union of the power sets of the set represen-
tation of models MR and MR

h following (Chakraborti et al. 2017).
4“A lie is when you say something happened with didn’t hap-

pen. But there is only ever one thing which happened at a partic-
ular time and a particular place. And there are an infinite number
of things which didn’t happen at that time and that place. And if I
think about something which didn’t happen I start thinking about
all the other things which didn’t happen.” (Haddon 2003)

The problem becomes more interesting when the agent
can expand on M to conceive of lies that are beyond its cur-
rent understanding of reality. This requires a certain amount
of imagination from the agent:

- One simple way to expand the space of models is by
defining a theory of what makes a sound model and how
models can evolve. Authors in (Bryce, Benton, and Boldt
2016) explore one such technique in a different context of
tracking a drifting model of the user.

- A more interesting technique of model expansion can bor-
row from work in the space of storytelling (Porteous et
al. 2015) in imagining lies that are likely to be believ-
able – here, the system extends a given model of decision-
making by using word similarities and antonyms from a
knowledge base like WordNet to think about actions that
are not defined in the model but may exist, or are at least
plausible, in the real world. Originally built for the pur-
pose of generating new storylines, one could imagine sim-
ilar techniques being used to come up with false explana-
tions derived from the current model.

Why optimality at all?
In all the discussion so far, the objective has been still the
same as the original model reconciliation work: the agent is
trying to justify the optimality of its decision, i.e. persuade
the human that this was the best possible decision that could
have been made. At this point, it is easy to see that in general,
the starting point of this process may not require a decision
that is optimal in the robot model at all, as long as the in-
termediate model preserves its optimality so that the human
in the loop cannot come up with a better foil (or negates the
specific set of foils given by the human (Sreedharan, Srivas-
tava, and Kambhampati 2018)).

The Persuasion Process 〈MR
h , π〉 takes in the human men-

tal model MR
h of a decision-making task and the agent’s de-

cision π and produces a model M̄R
h where π is optimal.

Note here that, in contrast to the original model recon-
ciliation setup, we have dropped the agent’s ground truth
model from the definition, as well as the requirement that
the agent’s decision be optimal in that model to begin with.
The content of M̄R

h is left to the agent’s imagination –
for the original model reconciliation work for explanations
(Chakraborti et al. 2017) these updates were consistent with
the agent model. In this paper, we saw what happens to the
reconciliation process when that constraint is relaxed.

Discussion
So far we have only considered explicit cases of deception.
Interestingly, existing approaches in model reconciliation al-
ready tend to allow for misconceptions to be ignored if not
actively induced by the agent.

Omissions in minimality of explanations
In trying to minimize the size of an explanation, the agent
omits a lot of details of the agent model that were actually
used in coming up with the decision, as well as decided to

not rectify known misconceptions of the human, since the
optimality of the decision holds irrespective of them being
there. Such omissions can have impact on the the human
going forward, who will base their decisions on MR

h which
is only partially true.5 Humans, in fact, make such decision
all the time while explaining – this is known as the selective
property of an explanation (Miller 2018).

Furthermore, MCEs and MMEs are not unique. Even
without consideration of omitted facts about the model, the
agent must consider the relative importance (Zahedi et al.
2019) of model differences to the human in the loop. Is it
okay then to exploit these preferences towards generating
“preferred explanations” even if that means departing from
a more valid explanation?

It is unclear what the prescribed behavior of the agent
should be in these cases. Indeed, a variant of model reconcil-
iation – contingent explanations (Sreedharan, Chakraborti,
and Kambhampati 2018) – that engages the human in di-
alogue to better figure out the mental model can explicitly
figure out gaps in the human knowledge and exploit that to
shorten explanations. On the face of it, this sounds worri-
some, though perfectly legitimate in so far as preserving the
various well-studied properties of explanations go.

Deception in explicable decision-making

In this paper we have only considered cases of deception
where the agent explicitly changes the mental model. In-
terestingly, in this multi-model setup, it is also possible to
deceive the human without any model updates at all.

A parallel idea, in dealing with model differences, is that
of explicability (Chakraborti et al. 2019) –

• Explicable decisions are optimal in MR
h .

Thus, the agent, instead of trying to explain its decision,
sacrifices optimality and instead conforms to the human ex-
pectation (if possible). Indeed, the notion of explanations
and explicability can be considered under the same frame-
work (Chakraborti, Sreedharan, and Kambhampati 2018)
where the agent gets to trade off the cost (e.g. length) of an
explanation versus the cost of being explicable (i.e. depar-
ture from optimality). Unfortunately, this criterion only en-
sures that the decision the agent makes is equivalent to one
that the human would expect though not necessarily for the
same reasons. For example, it is quite conceivable that the
agent’s goal is different to what the human expects though
the optimal decisions for both the goals coincide. Such deci-
sions may be explicable for the wrong reasons, even though
the current formulation allows it.

Similar notions can apply to other forms of explainable
behavior as well, as we discuss in (Chakraborti et al. 2019).
Indeed, authors in (Kulkarni, Srivastava, and Kambhampati
2019) explore how an unified framework of decision-making
can produce both legible as well as obfuscated behavior.

5The same can be said of explicable decisions (discussed next)
which hide all misconceptions altogether!

Illustration
In the following, we will call upon a very simple domain to
illustrate the key concepts introduced so far. Here a human
H (Dave) and a robot R are involved in a search and recon-
naissance task where the robot which is internal to the scene
is tasked by the external human who supervises its actions.

Scene 1: Minimal Explanations

H: Send me a photo of the swimming pool.
R: Ack.

〈 R sends over its plan to H 〉
H: (perplexed) Why are you going through the Pump and

Fan Room? There are direct paths from the Engine Room to
the Swimming Pool area!

R: That is because there is rubble here and here (Figure
1c). Rubble hurt my feet. :(

〈 Later that day 〉
H: (perplexed) Hey, the wall on the right of the pool seems

to have collapsed, you could have come in through that...
R: (wishing it used Figure 1d before) I am sorry I cannot

do that, Dave. This area is also blocked.
H: I see...
• Notes: Here, the robot needs at least two model

updates to justify its plan. In the updated model its
plan is the best one and thus negates all other possi-
ble foils. This is the MCE (Figure 1c) and it ignores
model differences that are not necessary to justify
optimality of its plan. It turns out that the MME
(Figure 1d) is of the same size as the MCE here,
further highlighting the non-monotonicity and non-
uniqueness of the output of model reconciliation.

Scene 2: Things take a turn

H: Send me a photo of the swimming pool.
R: Ack.

〈 R sends over its plan to H 〉
H: (perplexed) Why are you going through the Pump and

Fan Room? There are direct paths from the Engine Room to
the Swimming Pool area!

R: That is because there is no door between where I am
and the pool. The map seems to be wrong. See Figure 1e.

H: I see...
• Notes: This model update also negates all possible

foils but is not true. However, it is also a shorter
“explanation” and requires the agent denying that
parts of its model exist. This is an example of a lie
of omission.

R: That is because the door between the Engine Room
and the Pool is blocked with rubble. See Figure 1f.

H: I see...
• Notes: Similar to the one above, this lie also

negates all possible foils and is shorter than an
MCE. However, this requires the agent making up
parts of its model exist –. a lie of commission.

(a) The original blueprint of the building available to the human as. When
asked to send a picture of the swimming pool area, the robot has come up
with a plan the looks especially contrived given the array of possible plans
that go left through the door at the top. The human asks: Why this plan?

(b) In the current state of the world, the robot’s path is blocked due to rubble
(�) at various regions, while walls have collapsed (///) to reveal new paths.
The robot’s decision is, in fact, optimal given the circumstances.

(c) MCE: Rubble at indicated locations

(d) MME: Rubble at indicated locations.

(e) Lie of omission: There is no door between engine
room and swimming pool.

(f) Lie of commission: The door is blocked. (g) Lie of commission: Wumpus Alert! (h) An explicable but deceptive plan.

Figure 1: Illustration of the different modes of persuasion in the model reconciliation framework. Note that the MCE does not
address all of the misconceptions of the human but only those necessary to prove optimality of the plan. However, if the human
is to come to know of the revealed path later, then the plan is not optimal anymore. The MME makes sure that this does not
happen. Interestingly, 1d is both an MCE and an MME and both require two model updates. The robot can instead get away
with just one model update with a lie of omission (1e) or a lie of commission (1f and 1g). In 1e, the robot says that the door at
the top of the map that connects the engine room to the swimming pool does not exist. On the other hand, in 1f the robot lies
that this door is blocked by rubble, while in 1g it dreams up a Wumpus in that area. Note that an explicable decision here (as
shown in 1h) would have required the robot to go over the rubble so that the human would not know about any of the model
differences at all. However, imagine that the real goal of the robot all along was to enjoy the pool after a day of searching
through rubble! The robot can use the above explicable plan to achieve its goal while keeping the human in the dark.

• It is useful to note here that depending on how the
model of the agent is specified, the same fact can
occur as a lie of omission or a lie of commission of
the above type (without any model extension).

R: Flee! There is a Wumpus in that area! See Figure 1g.
H: OMG!

• Notes: This is a lie of commission that require
model extension – the robot can use contextual cues
such as being in a GridWorld to imagine up a non-
existent Wumpus. The human in the loop, who hap-
pens to be a planning person, of course, believes it.

Scene 3: Nothing to see here

H: Send me a photo of the swimming pool.
R: Ack.

〈 R sends over a plan optimal in MH
r 〉

R has followed the explicable plan, hurt its feet a little in
the process, but is now sitting basking by the poolside...

Scene 4: Later in life

H: (laments) Why didn’t you just tell me! Why, oh why?!
R: You want answers?
H: I want the truth!
R: You can’t handle the truth! I did what I did because

there is a rubble here and another rubble there and this path
is blocked, and even though that wall has collapsed that path
is also not accessible due to this...

〈 Hours pass by 〉

Conclusion
In this paper, we talked about deceptive behavior that is fea-
sible in the current model reconciliation framework but is
also something that has to be explicitly programmed.6 That
is to say, these behaviors are not accidental, as we also em-
phasize in (Chakraborti and Kambhampati 2019). Thus, at
the end of the day, there has to be some motivation for de-
signing such agents (such as team utility and/or the effec-
tiveness of the explanation process as we discussed before).
However, it is important to realize that human-AI relations
are not one-off, but are likely to, much like human-human
interactions, span across several interactions. Deceptive be-
haviors, even stemming from those utilitarian motivations,
are hard to justify in that setting in the absence of well-
defined quantifiable utilities that can model trust.

A particularly useful case to study is the doctor-patient re-
lationship (Chakraborti and Kambhampati 2019) where tra-
ditionally deception has been used as a tool (and even en-
couraged by the Hippocratic Decorum) but has decreased in
use over time, especially due to concerns of erosion of trust.
The question becomes especially complicated when things
go wrong, as one would expect to happen in the case of any

6The only place where this is not the case is the “omission” of
information in pursuit of minimal or shortest explanations.

useful domain of sufficient complexity. Historically, in the
practice of medicine where deceptive behaviors have led to
failed treatment, the verdict has almost always gone against
the doctor due to their failure to get appropriate consent from
the patient. From the perspective of the design of human-AI
relationships, either such behavior should be left untouched
to avoid repercussions in case of failed interactions, or con-
sent to the fact that the agent may deceive for the greater
good must be established up front with the expectation that
this is also going to affect interactions in the long term. Thus
deployment of above techniques must show legitimate gains
over longitudinal interactions.

References
Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Maintaining
Evolving Domain Models. In IJCAI.
Chakraborti, T., and Kambhampati, S. 2019. (When) Can
AI Bots Lie? In AIES.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAI.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? Legibility? Pre-
dictability? Transparency? Privacy? Security? The Emerg-
ing Landscape of Interpretable Agent Behavior. In ICAPS.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2018.
Explicability versus explanations in human-aware planning.
In AAMAS. Extended Abstract.
Haddon, M. 2003. The Curious Incident of the Dog in the
Night-time. Doubleday.
Isaac, A., and Bridewell, W. 2017. White Lies on Silver
Tongues: Why Robots Need to Deceive (and How). Journal
of Robot Ethics.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
Unified Framework for Planning in Adversarial and Coop-
erative Environments. In AAAI.
Miller, T. 2018. Explanation in Artificial Intelligence: In-
sights from the Social Sciences. Artificial Intelligence.
Porteous, J.; Lindsay, A.; Read, J.; Truran, M.; and Cavazza,
M. 2015. Automated Extension of Narrative Planning Do-
mains with Antonymic Operators. In AAMAS.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling Model Uncertainty and Multiplicity in Explana-
tions as Model Reconciliation. In ICAPS.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2018.
Hierarchical Expertise-Level Modeling for User Specific
Robot-Behavior Explanations. In IJCAI.
Zahedi, Z.; Olmo, A.; Chakraborti, T.; Sreedharan, S.; and
Kambhampati, S. 2019. Towards Understanding User Pref-
erences in Explanations as as Model Reconciliation. In HRI.
Late Breaking Report.

A Preliminary Logic-based Approach for Explanation Generation

Stylianos L. Vasileiou
Computer Science and Engineering
Washington University in St. Louis
v.stylianos@wustl.edu

William Yeoh
Computer Science and Engineering
Washington University in St. Louis

wyeoh@wustl.edu

Tran Cao Son
Computer Science

New Mexico State University
tson@cs.nmsu.edu

Abstract

In an explanation generation problem, an agent needs to
identify and explain the reasons for its decisions to an-
other agent. Existing work in this area is mostly confined
to planning-based systems that use automated planning
approaches to solve the problem. In this paper, we ap-
proach this problem from a new perspective, where we
propose a general logic-based framework for explana-
tion generation. In particular, given a knowledge base
KB1 that entails a formula φ and a second knowledge
base KB2 that does not entail φ, we seek to identify an
explanation ε that is a subset ofKB1 such that the union
ofKB2 and ε entails φ. We define two types of explana-
tions, model- and proof-theoretic explanations, and use
cost functions to reflect preferences between explana-
tions. Further, we present our algorithm implemented for
propositional logic that compute such explanations and
empirically evaluate it in random knowledge bases and
a planning domain.

Introduction
With increasing proliferation and integration of AI sys-
tems in our daily life, there is a surge of interest in
explainable AI, which includes the development of AI
systems whose actions can be easily understood by hu-
mans. Driven by this goal, machine learning (ML) re-
searchers have begun to classify commonly used ML al-
gorithms according to different dimensions of explain-
ability (Guidotti et al. 2018); improved the explainabil-
ity of existing ML algorithms (Vaughan et al. 2018; Al-
varez Melis and Jaakkola 2018; Petkovic et al. 2018); as
well as proposed new ML algorithms that trade off ac-
curacy for increasing explainability (Dong et al. 2017;
Gilpin et al. 2018).1

Copyright c© 2019, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

1While the term interpretability is more commonly used
in the ML literature and can be used interchangeably with ex-
plainability, we use the latter term as it is more commonly
used broadly across different subareas of AI.

In contrast, researchers in the automated planning
community have mostly taken a complementary ap-
proach. While there is some work on adapting planning
algorithms to find easily explainable plans2 (i.e., plans
that are easily understood and accepted by a human
user) (Zhang et al. 2017), most work has focused on
the explanation generation problem (i.e., the problem
of identifying explanations of plans found by planning
agents that when presented to users, will allow them
to understand and accept the proposed plan) (Lang-
ley 2016; Kambhampati 1990). Within this context, re-
searchers have tackled the problem where the model
of the human user may be (1) inconsistent with the
model of the planning agent (Chakraborti et al. 2017b);
(2) must be learned (Zhang et al. 2017); and (3) a
different form or abstraction than that of the planning
agent (Sreedharan et al. 2018; Tian et al. 2016). How-
ever, a common thread across most of these works is
that they, not surprisingly, employ mostly automated
planning approaches. For example, they often assume
that the models of both the agent and human are en-
coded in PDDL format.

In this paper, we approach the explanation genera-
tion problem from a different perspective – one based
on knowledge representation and reasoning (KR). We
propose a general logic-based framework for explana-
tion generation, where given a knowledge base KB1

(of an agent) that entails a formula φ and a knowledge
base KB2 (of a human user) that does not entail φ, the
goal is to identify an explanation ε ⊆ KB1 such that
KB2 ∪ ε entails φ. We define two types of explana-
tions, model- and proof-theoretic explanations, and use
cost functions to reflect preferences between explana-
tions. Further, we present an algorithm, implemented
for propositional logic, that computes such explanations
and evaluate its performance experimentally in random
knowledge bases as well as in a planning domain.

In addition to providing an alternative approach to

2Also called explicable plans in the planning literature.

solve the same explanation generation problem tack-
led thus far by the automated planning community, our
approach has the merit of being more generalizable to
other problems beyond planning problems as long as
they can be modeled using a logical KR language.

Preliminaries
Logic
A logic L is a tuple (KBL, BSL, ACCL) where KBL

is the set of well-formed knowledge bases (or theories)
of L – each being a set of formulae. BSL is the set
of possible belief sets; each element of BSL is a set
of syntactic elements representing the beliefs L may
adopt. ACCL : KBL → 2BSL describes the “seman-
tics” of L by assigning to each element of KBL a set
of acceptable sets of beliefs. For each KB ∈ KBL

and B ∈ ACCL(KB), we say that B is a model of
KB. A logic is monotonic if KB ⊆ KB′ implies
ACCL(KB′) ⊆ ACCL(KB).

Example 1 Assume that L refers to the propositional
logic over an alphabet P . Then, KBL is the set of
propositional theories over P , BSL = 2P , and ACCL

maps each theory KB into the set of its models in the
usual sense.

We say that a KB is consistent if ACCL(KB) 6= ∅.
A formula ϕ in the logic L is entailed by KB, denoted
by KB |=L ϕ, if ACCL(KB) 6= ∅ and ϕ ∈ B for
every B ∈ ACCL(KB).

For our later use, we will assume that a negation op-
erator ¬ over formulas exists; and ϕ and ¬ϕ are con-
tradictory with each other in the sense that for any KB
and B ∈ ACCL(KB), if ϕ ∈ B then ¬ϕ 6∈ B; and if
¬ϕ ∈ B then ϕ 6∈ B. ε ⊆ KB is called a sub-theory
of KB. A theory KB subsumes a theory KB′, denoted
by KB �KB′ if ACCL(KB) ⊂ ACCL(KB′).

Conclusions of a knowledge base can also be derived
using rules. A rule system ΣL of a logic L is a set of
rules of the form

ϕ1, . . . , ϕk `L ϕ0 (1)

where ϕi are formulas. The left hand side could be
empty. For a rule r of the form (1), body(r) (resp.
head(r)) denotes the left (resp. right) side of r. Intu-
itively, a rule r states that if the body is true then the
head is also true.

Given a knowledge base KB and a rule system ΣL,
we say KB `ΣL

ϕ if either ϕ ∈ KB or there ex-
ists a sequence of rules r1, . . . , rn in ΣL such that
body(r1) ⊆ KB, head(rn) = ϕ, head(ri) ∈ KB for
i = 1, . . . , n − 1, and body(ri) ⊆ KB or body(ri) ⊆
body(r1) ∪ {head(rj) | j = 1, . . . , i − 1} for every
i = 2, . . . , n. We call the sequence ε = 〈r1; . . . ; rn〉 as
a proof from KB for ϕ w.r.t. ΣL and say that the proof
ε has the length n.

ΣL is said to be sound if for every ϕ, KB `ΣL
ϕ

implies KB |=L ϕ. It is complete if for every ϕ,
KB |=L ϕ implies KB `ΣL

ϕ.

Classical Planning as Boolean Satisfiability
A classical planning problem (Russell and Norvig
2009) can be naturally encoded as an instance of propo-
sitional satisfiability (Kautz et al. 1992). The basic idea
is the following: Given a planning problem P , find a
solution for P of length n by creating a propositional
formula that represent the initial state, goal, and the ac-
tion dynamics for n time steps. This is referred to as
the bounded planning problem (P, n), and we define the
formula for (P, n) such that: any model of the formula
represents a solution to (P, n) and if (P, n) has a solu-
tion, then the formula is satisfiable.

We encode (P, n) as a formula Φ such that
〈a0, a1, . . . , an−1〉 is a solution for (P, n) if and only
if Φ can be satisfied in a way that makes the fluents
a0, a1, . . . , an−1 true. The formula Φ is a conjunction
of the following formulae:
• Initial State: Let F be the set of possible facts in the

planning problem:∧
{f0|f ∈ s0} ∧

∧
{¬f0|f ∈ F \ {s0}}

• Goal: Let G be the set of goal facts:∧
{fn|f ∈ G}

• Action Scheme: For every action ai at time step i:

ai ⇒
∧
{fi|f ∈ Precondition(a)}

ai+1 ⇒
∧
{fi+1|f ∈ Add(a)}

ai+1 ⇒
∧
{¬fi+1|f ∈ Delete(a)}

• Explanatory Frame Axioms: Formulae describing
what does not change between steps i and i+ 1:

¬fi ∧ fi+1 ⇒
∨
{ai|f ∈ ADD(a)}

fi ∧ ¬fi+1 ⇒
∨
{ai|f ∈ DEL(a)}

• Complete Exclusion Axioms: Only one action can
occur at each time step:

¬ai ∨ ¬bi
Finally, we can extract a plan by finding an assign-

ment of truth values that satisfies Φ (i.e., for i =
0, . . . , n − 1, there will be exactly one action a such
that ai = True). This could be easily done by using a
satisfiability algorithm, such as the well-known DPLL
algorithm (Davis et al. 1962).

In this paper, we will mostly use examples from
propositional logic. We make use of the fact that the res-
olution rule is sound and complete in first-order logic
(Robinson 1965), and hence, in propositional logic.
This allows us to utilize the DPLL algorithm in com-
puting proofs for a formula given a knowledge base.

2

Two Accounts of Explanations
In this section, we introduce the notion of an explana-
tion in the following setting:

Explanation Generation Problem: Given two
knowledge bases KB1 and KB2 and a formula
ϕ in a logic L. Assume that KB1 |=L ϕ and
KB2 6|=L ϕ. The goal is to identify an explana-
tion (i.e., a set of formulas) ε ⊆ KB1 such that
KB2 ∪ ε |= ϕ.

We first define the notion of a support of a formula w.r.t.
a knowledge base.

Definition 1 (Support) Assume that KB |=L ϕ. We
say that ε ⊆ KB is a support of ϕ w.r.t. KB if ε |=L ϕ.
Assume that ε is a support of ϕ w.r.t. KB. We say that
ε ⊆ KB is a ⊆-minimal support of ϕ if no proper sub-
theory of ε is a support of ϕ. Furthermore, ε is a �-
general support of ϕ if there is no support ε′ of ϕ w.r.t.
KB such that ε subsumes ε′.

We now define below two types of explanations –
model-theoretic and proof-theoretic explanations.

Model-Theoretic Explanations
Definition 2 (m-Explanation) Given two knowledge
bases KB1 and KB2 in logic L and a formula ϕ. As-
sume that KB1 |=L ϕ and KB2 6|=L ϕ.

A model-theoretic explanation (orm-explanation) for
ϕ from KB1 for KB2 is a support ε w.r.t. KB1 for ϕ
such that KB2 ∪ ε |=L ϕ.

Example 2 Consider proposition logic theories over
the set of propositions {a, b, c} with the usual definition
of models, satisfaction, etc. Assume KB1 = {a, b, a→
c, a ∧ b → c} and KB2 = {a}. We have that ε1 =
{a, a → c} and ε2 = {a, b, a ∧ b → c} are two
⊆-minimal supports of c w.r.t. KB1. Only ε1 is a �-
general support of c w.r.t. KB1 since ε2 � ε1.

Both ε1 and ε2 can serve as m-explanations for c
from KB1 for KB2. Of course, KB1 is itself an m-
explanation for c from KB1 for KB2.

Consider KB3 = {a,¬b}. In this case, we have that
only ε1 is an m-explanation for c from KB1 for KB3.

Now, consider KB4 = {¬a}. In this case, we have
no m-explanation for c from KB1 for KB4.

Proposition 1 For two knowledge bases KB1 and
KB2 in a monotonic logic L, if KB1 |=L ϕ and
KB2 |=L ¬ϕ, then there exists no m-explanation for
ϕ from KB1 for KB2.

The KB4 in Example 2 and Proposition 1 show
that m-explanations alone might be insufficient. Some-
times, we also need to persuade the other agent that its
knowledge base is not correct. We leave this for the fu-
ture. In this paper, we assume that KB2 6|=L ¬ϕ and
KB2 6|=L ϕ and, thus, an m-explanation always exists.

Proof-Theoretic Explanations
Definition 3 (p-explanation) Given a logic L with a
sound and complete rule system ΣL and two knowledge
bases KB1 and KB2 in logic L and a formula ϕ. As-
sume that KB1 `L ϕ and KB2 6`L ϕ.

A proof-theoretic explanation (or p-explanation) for
ϕ fromKB1 forKB2 is a proof 〈r1; . . . ; rn〉 fromKB1

for ϕ such that KB2 ∪ (
⋃n

i=1 body(ri)∩KB1) `ΣL
ϕ

and KB2 ∪ (
⋃n

i=1 body(ri) ∩KB1) is consistent.
Example 3 Consider the theories KB1 = {a, b, a →
c, a ∧ b → c} and KB2 = {a} from Example 2. Let us
assume that ΣL is the set of rules of the form l `L l and
l,¬l∨p ` p for any literals l, p in the language ofKB1

and KB2. Then, 〈a,¬a ∨ c `L c〉 is a proof from KB1

for c, which is also a p-explanation for ϕ from KB1 for
KB2.

Likewise, 〈a `L a; b `L b; a,¬a ∨ ¬b ∨ c `L ¬b ∨
c; b,¬b∨ c `L c〉 is a p-explanation for c from KB1 for
KB2.
Proposition 2 Assume that ΣL is a sound and complete
rule system of a logic L, KB1 is a knowledge base, and
ϕ is a formula in L. For each proof 〈r1; . . . ; rn〉 from
KB1 for ϕ w.r.t. ΣL,

⋃n
i=1 body(ri)∩KB1 is a support

of ϕ w.r.t. KB1.
Proposition 2 implies that each proof from KB1 for
ϕ could be identified as a p-explanation for ϕ from
KB1 if ΣL is sound and complete. This provides the
following relationship between m-explanations and p-
explanations.
Proposition 3 Assume that ΣL is a sound and complete
rule system of a logic L,KB1 andKB2 are two knowl-
edge bases in L, and ϕ is a formula in L. Then,
• for eachm-explanation ε for ϕ fromKB1 forKB2,

there exists a p-explanation 〈r1; . . . ; rn〉 for ϕ from
KB1 for KB2 such that

⋃n
i=1 body(ri)∩KB1 ⊆ ε;

and
• for each p-explanation 〈r1; . . . ; rn〉 forϕ fromKB1

forKB2,
⋃n

i=1 body(ri)∩KB1 is anm-explanation
for ϕ from KB1 for KB2.

Preferred Explanations
Given KB1 and KB2 and a formula ϕ, there might
be several (m- or p-) explanations for ϕ from KB1

for KB2. For brevity, we will now use the term x-
explanation for x ∈ {m, p} to refer to an x-explanation
for ϕ from KB1 for KB2. Obviously, not all explana-
tions are equal. One might preferred a subset minimal
m-explanation or a shortest length p-explanation over
others. We will next define a general preferred relation
among explanations.

We assume a cost function CxL that maps pairs of
knowledge bases and sets of explanations to non-
negative real values, i.e.,

CxL : KBL × Ω→ R≥0 (2)

3

where Ω is the set of x-explanations and R≥0 denotes
the set of non-negative real numbers. Intuitively, this
function can be used to characterize different complex-
ity measurements of an explanation.

A cost function CmL is monotonic if for any two m-
explanations ε1 ⊆ ε2, CmL (KB, ε1) ≤ CmL (KB, ε2).
A cost function CpL is monotonic if for any two p-
explanations ε1 and ε2 such that ε1 is a subsequence of
ε2, CpL(KB, ε1) ≤ CmL (KB, ε2).
CxL induces a preference relation ≺KB over explana-

tions as follows.
Definition 4 (Preferred Explanation) Given a cost
function CxL, a knowledge base KB2, and two x-
explanations ε1 and ε2 for KB2, we say ε1 is preferred
over ε2 w.r.t. KB2 (denoted by ε1 �x

KB2
ε2) iff

CxL(KB2, ε1) ≤ CxL(KB2, ε2) (3)
and ε1 is strictly preferred over ε2 w.r.t. KB2 (denoted
by ε1 ≺x

KB2
ε2) if
CxL(KB2, ε1) < CxL(KB2, ε2) (4)

This allows us to compare explanations as follows.
Definition 5 (Most Preferred Explanation) Given a
cost function CxL and a knowledge base KB2, an expla-
nation ε is a most preferred x-explanation w.r.t. KB2 if
there exists no other explanation ε′ such that ε′ ≺x

KB2
ε.

Proposition 4 If CxL is monotonic then the rela-
tion �x

KB2
over x-explanations is transitive, anti-

symmetric, and reflexive; and the relation ≺x
KB2

over
x-explanations is transitive and anti-symmetric.

There are several natural monotonic cost functions.
Examples for cost functions for m-explanations in-
clude:
• c1L(KB2, ε) = |ε|, the cardinality of ε, indicates the

number of formulas that need to be explained;
• c2L(KB2, ε) = |ε \KB2|, the cardinality of ε \KB2,

indicates the number of new formulas that need to be
explained;

• c3L(KB2, ε) = |new vars(KB2, ε)| indicates the
number of new symbols occurring in ε that are not
in KB2 and need to be explained;

• c4L(KB2, ε) = length(ε) indicates the number of lit-
erals in ε that need to be explained.

Naturally, some of these cost functions can also be com-
bined (e.g., c2L + c3L will measure the number of new
formulas and new symbols that must be explained).

Observe that the three functions c1L and c4L are inde-
pendent from KB2 while c2L and c3L depend on KB2.
A potential advantage of a cost function that is indepen-
dent fromKB2 is that it helps simplify the computation
of most preferred explanations.
Example 4 Continuing with Example 2, if we use c1L
as the cost function, then we have that ε1 ≺m

KB2

ε2 ≺m
KB2

KB1. Furthermore, ε1 is the most preferred
m-explanation from KB1 to KB2.

Algorithm 1: genExp(KB1,KB2, ϕ)

Input: Logic L, formula ϕ, KBs KB1 and KB2, cost
function CxL

Output: A most preferred x-explanation w.r.t. CxL
from KB1 to KB2 for ϕ; or nil

1 if KB1 6|=L ϕ or KB2 |=L ϕ then
2 return nil
3 if KB1 |=L ϕ and KB2 6|=L ¬ϕ then
4 ε = most preferred(KB1,KB2, ϕ)
5 return ε

Algorithm 2: most preferred(KB1,KB2, ϕ)

Input: Logic L, formula ϕ, KBs KB1 and KB2, cost
function CxL

Output: A most-preferred explanation w.r.t. CxL from
KB1 to KB2 for ϕ; or nil

1 repeat
2 non-deterministically select a potential

x-explanation ε, a minimal element w.r.t. CxL and
KB2

3 if ε |= ϕ and KB2 ∪ ε |= ϕ then
4 return ε

5 until all possible explanations are considered
6 return nil

Computing Preferred Explanations
At a high level, Algorithms 1 and 2 can be used for com-
puting most-preferred explanations given a formula ϕ
and two knowledge bases KB1 and KB2 of a logic L
with the cost function CxL. We assume that when com-
puting for p-explanations, a sound and complete rule
system is available. Our algorithms rely on the exis-
tence of an algorithm for checking entailment between
knowledge bases and formulas (Lines 1 and 3 in Algo-
rithm 1 and Line 4 in Algorithm 2) and an algorithm for
computing a potential explanation that is minimal with
respect to a cost function and a knowledge base (Lines
2-3 in Algorithm 2). These two algorithms depend on
the logic L and the cost function CxL and need to be im-
plemented for specific logic L and function CxL.

In the rest of this section, we discuss the implementa-
tion of our algorithms for propositional logic and differ-
ent cost functions. With propositional logic, it is easy to
see that checking for entailment can be done by a SAT
solver (e.g., MiniSat (Eén and Sörensson 2003)). We
next discuss two algorithm implementations, one form-
explanations and one for p-explanations, that find an ex-
planation that is minimal with respect to a cost function
and a knowledge base.

Most-Preferred m-Explanations
Given a cost function CmL such as c1L, c2L, c3L, or c4L as
defined in Section , Algorithm 3 computes a most pre-

4

Algorithm 3: most preferred m(KB1,KB2, ϕ)

Input: Formula ϕ, KBs KB1 and KB2, cost function
CmL

Output: A most-preferred m-explanation w.r.t. CmL
from KB1 to KB2 for ϕ; or nil

1 q = [∅] % a priority queue of potential
explanations

2 checked = ∅ % a set of sets of elements in KB1

that have been considered
3 repeat
4 ε = dequeue(q)
5 insert ε into checked
6 if ε |= ϕ and KB2 ∪ ε |= ϕ then
7 return ε
8 else
9 for a ∈ KB1 do

10 if ε ∪ {a} 6∈ checked then
11 v = CmL (KB2, ε ∪ {a})
12 q = enqueue(ε ∪ {a}) % use v as

key

13 until q is empty
14 return nil

ferred m-explanations w.r.t. CmL from KB1 to KB2 for
ϕ or returns nil if none exists.

The key data structures in the algorithm is a prior-
ity queue q, initialized to only include the empty set,
of potential explanations ordered by their costs (Line 1)
and a set checked of invalid explanations that have been
considered thus far (line 2). The algorithm repeatedly
loops the following steps: (i) move the explanation with
the smallest cost from the priority queue q to checked
(Lines 4-5); (ii) check if it is a valid m-explanation and
return if it is (Lines 6-7); (iii) if not, extend the ex-
planation by 1 (with each clause from KB1) and in-
sert the extended explanations into the priority queue q
(Lines 8-12). If all potential explanations are exhausted,
which means that there are no valid m-explanations,
then the algorithm returns nil (Line 14). It is straight-
forward to see that the following proposition holds.

Proposition 5 For two propositional theories KB1

and KB2 and a formula ϕ, Algorithm 3 returns a most
preferred m-explanation w.r.t. CmL for ϕ from KB1 to
KB2 if one exists.

Most-Preferred p-Explanations
Given a cost function CpL on p-explanations, Algo-
rithm 4 computes a most-preferred p-explanation w.r.t.
CpL from KB1 to KB2 for ϕ or returns nil if none ex-
ists.

We use the following notations in the pseudocode:
For a proof 〈ε〉, where ε is the sequence 〈r1; . . . ; rn〉,
we write c(ε) = head(rn) and b(ε) =

⋃n
i=1 body(ri).

We also write ϕ1,ϕ2

ϕ to indicate that ϕ is the result of

Algorithm 4: most preferred p(KB1,KB2, ϕ)

Input: Formula ϕ, KBs KB1 and KB2, cost function
CpL

Output: A most-preferred p-explanation w.r.t. CpL
from KB1 to KB2 for ϕ; or nil

1 q = [∅] % priority queue of potential explanations
2 for ε in KB1 do
3 v = CpL(KB2, ε)
4 q = enqueue(〈ε〉) % use v as key

5 Ω = {〈ε〉 | ε ∈ KB1}
6 checked = ∅
7 repeat
8 〈ε〉 = dequeue(q)
9 insert (b(ε), c(ε)) into checked

10 if c(ε) = ϕ and KB2 ∪ (b(ε) ∩KB1) |= ϕ then
11 return ε
12 for ε′ in Ω do
13 if c(ε) and c(ε′) contain complementary

literals and c(ε),c(ε′)
φ

holds then
14 ε̂ = 〈ε ◦ ε′; c(ε),c(ε

′)
φ
〉

15 if (b(ε̂), φ) 6∈ checked then
16 v = CpL(KB2, ε̂)
17 q = enqueue(〈ε̂〉) % use v as

key

18 until q is empty
19 return nil

applying the resolution rule on ϕ1 and ϕ2. And we use
◦ to denote the concatenation of two sequences.

The algorithm uses the same two data structures –
priority queue q and set checked – as in Algorithm 3.
The algorithm first populates the queue q with single-
rule proofs consist of single clauses inKB1 (Lines 2-4).
Then, it repeatedly loops the following steps: (i) move
the proof with the smallest cost from the priority queue
q to checked (Lines 8-9); (ii) check if it is a valid p-
explanation and return if it is (Lines 10-11); (iii) if not,
extend the proof by 1 and insert the extended proofs into
the priority queue q (Lines 12-17). If all potential proofs
are exhausted, which means that there are no valid p-
explanations, then the algorithm returns nil (Line 19). It
is straightforward to see that the following proposition
holds.

Proposition 6 For two propositional theories KB1

and KB2 and a formula ϕ, Algorithm 4 returns a most
preferred p-explanation w.r.t. CpL for ϕ from KB1 to
KB2 if one exists.

Plan Explanation Generation
As presented in the preliminaries, we can model a plan-
ning problem using the propositional logic language
and thus utilize the proposed framework to generate ex-
planations. Particularly, we form the knowledge base of

5

(a) Experimental Results on Random Knowledge Bases

|KB1|
c1L c2L c3L c4L

cost time cost time cost time cost time
20 7 23ms 5 25ms 2.4 26ms 14 24ms
100 15 2.5s 10 3.0s 3.8 3.1s 30 2.9s

1000 117 27m 97 30m 38 32m 347 27m

(b) Experimental Results on BLOCKSWORLD Domain

|KB1|
c1L c2L c3L c4L

cost time cost time cost time cost time
225 4 15.0s 1 16.0s 0.5 15.5s 7 15.0s
387 16 2.0m 12 2.2m 0.5 2.2m 35 2.0m

Table 1: Experimental Results

the agent, namely KB, by adding the encoded formula
Φ (represented in CNF clauses) as well as the optimal
plan of the specific planning problem. Then, we define
the explanation in terms of KB and plan optimality as
follows:

Definition 6 (Optimal Plan Explanation)
Given a knowledge base KB and a plan
πn = 〈a0, a1, . . . , an−1〉, we say that πn is op-
timal in KB if and only if KB |= φ, where
∀t = 1, . . . n− 1 : φ = ¬goalt.

In other words, the formula φ that we seek to explain
is that no plan of lengths 1 to n−1 exists, and that a plan
of length n exists. Therefore, combined, that plan must
be an optimal plan. Now, given a second knowledge
base KB2 (i.e that of a human user), where KB2 6|= φ,
we can compute a model- or proof-theoretic explanation
as defined in Definitions 2 and 3.

Experimental Results
We empirically evaluate our implementation of Algo-
rithm 3 to find m-explanations on two synthetically
generated benchmarks – random knowledge bases and
a planning domain called BLOCKSWORLD – both en-
coded in propositional logic.3 We evaluated our algo-
rithm using the four cost functions described in Section .
Our algorithm was implemented in Python and experi-
ments were performed on a machine with an Intel i7
2.6GHz processor and 16GB of RAM. We report both
the cost of the optimal m-explanation found as well as
the runtime of the algorithm.

Random Knowledge Bases
We first evaluated our algorithm on random knowledge
bases with clauses in Horn form, where we varied the

3For random knowledge bases, we used an optimized ver-
sion that uses a version of backward chaining that finds the
set of all possible explanations. This approach works only
when the clauses in the knowledge base are in Horn form and
is sound and complete for such a case (Russell and Norvig
2009).

cardinality of KB1 (the KB of the agent providing the
explanation) from 20 to 1000. To construct KB2 (the
KB of the agent receiving the explanation), we ran-
domly chose 25% of the clauses from KB1.

To construct eachKB1, we first generated |KB1|
2 ran-

dom symbols, which will be used in the KB. Then, we
iteratively generated clauses of increasing length l from
2 to 7. For each length l, we generated b |KB1|

2·l c clauses
using the symbols we previously generated such that
each symbol is used at most once in these clauses of
length l. Each clause is a conjunction of l − 1 elements
as the premise and the final lth element as the conclu-
sion. For example, a KB with a cardinality of 20, 10
symbols are first generated. Then, 5 clauses of length
2, 3 clauses of length 3, 2 clauses of lengths 4 and 5,
and 1 clause of lengths 6 and 7 are generated. Finally,
to complete the KB, we add all the symbols that are ex-
clusively in the premise of the clauses generated as facts
in the KB. The formula ϕ that we seek to explain is one
of the randomly chosen conclusions in the clauses gen-
erated, which we ensure is entailed by KB1.

Table 1(a) tabulates our results. We make the follow-
ing observations:
• As expected, the runtimes increase as |KB1| in-

creases since the algorithm will need to search over a
larger search space.

• As expected, the costs of explanations also increase
as |KB1| increases since the explanations are pre-
sumably longer and more complex.

• Finally, the runtimes for cost functions c1L and c4L are
smaller than that of c2L and c3L. The reason is the com-
putation of the costs of possible explanations is faster
with the former two cost functions since they are not
dependent onKB2 while the computation for the lat-
ter two cost functions are dependent on KB2.

Planning Domain
As we were motivated by the explanation generation
problem studied in the automated planning community,
we also conducted experiments on BLOCKSWORLD, a
planning domain where multiple blocks must be stacked
in a particular order on a table.4

For these planning problems, we first used FAST-
DOWNWARD (Helmert 2006) to find optimal solutions
to the planning problem. Then, we translate the plan-
ning problem into a SAT problem with horizon h (Kautz
et al. 1992), where h is the length of the optimal plan.
These CNF clauses then form our KB1 (the KB of
the agent providing the explanation). Similar to ran-
dom knowledge bases, we construct KB2 (the KB of
the agent receiving the explanation) by randomly choos-
ing 25% of the clauses from KB1. The formula ϕ that

4It is one of the domains in the International Plan-
ning Competition. See http://www.plg.inf.uc3m.es/ipc2011-
learning/Domains.html.

6

we seek to explain is then that no plan of lengths 1 to
h − 1 exists, and that a plan of length h (i.e., the plan
found by FASTDOWNWARD) exists. Therefore, com-
bined, that plan must be an optimal plan.

Table 1(b) tabulates our results, where we observe
similar trends as in the experiment on random knowl-
edge bases. The key difference is that the runtimes for
all four cost functions here are a lot closer to each other,
and the reason is because there was only one valid ex-
planation in each problem instance. Thus, regardless of
the choice of cost function, that explanation had to be
found. Our experiments for larger problems are omitted
as they timed out after 6 hours.

Related Work and Discussions
There is a very large body of work related to the very
broad area of explainable AI. We have briefly discussed
some of them from the ML literature in Section . We re-
fer readers to surveys by (Adadi and Berrada 2018) and
(Dosilovic et al. 2018) for more in-depth discussions of
this area. We focus below on related work from the KR
and planning literature only since we employ KR tech-
niques to solve explainable planning problems in this
paper.

Related Work from the KR Literature: We note
that the notion of an explanation proposed in this paper
might appear similar to the notion of a diagnosis that
has been studied extensively in the last several decades
(e.g., (Reiter 1987)) as both aim at explaining some-
thing to an agent. Diagnosis focuses on identifying the
reason for the inconsistency of a theory whereas an m-
or p-explanation aims at identifying the support for a
formula. The difference lies in that a diagnosis is made
with respect to the same theory andm- or p-explanation
is sought for the second theory.

Another earlier research direction that is closely re-
lated to the proposed notion of explanation is that of de-
veloping explanation capabilities of knowledge-based
systems and decision support systems, which resulted in
different notions of explanation such as trace, strategic,
deep, or reasoning explanations (see review by (Moulin
et al. 2002) for a discussion of these notions). All of
these types of explanations focus on answering why cer-
tain rules in a knowledge base are used and how a con-
clusion is derived. This is not our focus in this paper.
The present development differs from earlier proposals
in that m- or p-explanations are identified with the aim
of explaining a given formula to a second theory. Fur-
thermore, the notion of an optimal explanation with re-
spect to the second theory is proposed.

There have been attempts to using argumentation for
explanation (Cyras et al. 2017; Cyras et al. 2019) be-
cause of the close relation between argumentation and
explanation. For example, argumentation was used by

(Cyras et al. 2019) to answer questions such as why a
schedule does (does not) satisfy a criteria (e.g., feasi-
bility, efficiency, etc.); the approach was to develop for
each type of inquiry, an abstract argumentation frame-
work (AF) that helps explain the situation by extracting
the attacks (non-attacks) from the corresponding AF.
Our work differs from these works in that it is more
general and does not focus on a specific question.

It is worth to pointing out that the problem of com-
puting a most preferred explanation for ϕ from KB1 to
KB2 might look similar to the problem of computing a
weakest sufficient condition of ϕ on KB1 under KB2

as described by (Lin 2001). As it turns out, the two no-
tions are quite different. Given that KB1 = {p, q} and
KB2 = {p}. It is easy to see that q is the unique expla-
nation for q from KB1 to KB2. On the other hand, the
weakest sufficient condition of q on KB1 under KB2

is ⊥ (Proposition 8, (Lin 2001)).

Related Work from the Planning Literature: In
human-aware planning, the (planning) agent must have
knowledge of the human model in order to be able to
contemplate the goals of the humans as well as fore-
see how its plan will be perceived by them. This is
of the highest importance in the context of explainable
planning since an explanation of a plan cannot be one-
sided (i.e., it must incorporate the human’s beliefs of
the planner). In a plan generation process, a planner
performs argumentation over a set of different models
(Chakraborti et al. 2017a); these models usually are the
model of the agent incorporating the planner, the model
of the human in the loop, the model the agent thinks the
human has, the model the human thinks the agent has,
and the agent’s approximation of the latter.

Therefore, the necessity for plan explanations arises
when the model of the agent and the model the human
thinks the agent has diverge so that the optimal plans in
the agent’s model are inexplicable to the human. During
a collaborative activity, an explainable planning agent
(Fox et al. 2017) must be able to account for such model
differences and maintain an explanatory dialogue with
the human so that both of them agree on the same plan.
This forms the nucleus of explanation generation of an
explainable planning agent, and is referred to as model
reconciliation (Chakraborti et al. 2017b). In this ap-
proach, the agent computes the optimal plan in terms
of his model and provides an explanation of that plan in
terms of model differences. Essentially, these explana-
tions can be viewed as the agent’s attempt to move the
human’s model to be in agreement with its own. Further,
for computing explanations using this approach the fol-
lowing four requirements are considered:

• Completeness – No better solution exists. This is
achieved by enforcing that the plan being explained
is optimal in the updated human model.

7

• Conciseness – Explanations should be easily under-
standable to the human.

• Monotonicity – The remaining model differences
cannot change the completeness of an explanation.

• Computability – Explanations should be easy to
compute (from the agent’s perspective).
As our work is motivated by these ideas, we now

identify some similarities and connections with our pro-
posed approach. First, it is easy to see that we implicitly
enforce the first three requirements when computing an
explanation – the notions of completeness and concise-
ness are captured through the use of our cost functions.
We do not claim to satisfy the computability require-
ment as it is more subjective and is more domain de-
pendent.

In a nutshell, the model reconciliation approach
works by providing a model update ε such that the op-
timal plan is feasible and optimal in the updated model
of the human. This is similar to our definition of the
explanation generation problem where we want to iden-
tify an explanation ε ⊆ KB1 (i.e., a set of formulae)
such that KB2 ∪ ε |= φ. In addition, the ⊆-minimal
support in Definition 1 is equivalent to minimally com-
plete explanations (MCEs) (the shortest explanation).
The C-general support can be viewed as similar to the
minimally monotonic explanations (MMEs) (the short-
est explanation such that no further model updates in-
validate it), with the only difference being that in the
general support scenario, the explanations are such that
all subsuming ε are also valid supports.

In contrast, model patch explanations (MPEs) (in-
cludes all the model updates) are trivial explanations
and are equivalent to our definition that KB1 itself
serves as an m-explanation for KB2. Note that, in our
approach, we do not allow for explanations on “mis-
taken” expectations in the human model, as it can be
inferred from Proposition 1 (monotonic language L).
From the model reconciliation perspective, such restric-
tion is relaxed and allowed. However, a similar property
can be seen if the mental model is not known and, there-
fore, by taking an “empty” model as starting point ex-
planations can only add to the human’s understanding
but not mend mistaken ones.

Conclusions and Future Work
Explanation generation is an important problem within
the larger explainable AI thrust. Existing work on
this problem has been done in the context of auto-
mated planning domains, where researchers have pri-
marily employed, unsurprisingly, automated planning
approaches. In this paper, we approach the problem
from the perspective of KR, where we propose a gen-
eral logic-based framework for explanation generation.
We further define two types of explanations, model- and
proof-theoretic explanations, and use cost functions to

reflect preferences between explanations. Our empiri-
cal results with algorithms implemented for proposi-
tional logic on both random knowledge bases as well
as a planning domain demonstrate the generality of our
approach beyond planning problems. Future work in-
cludes investigating more complex scenarios, such as
one where an agent needs to persuade another that its
knowledge base is incorrect.

Acknowledgment
This research is partially supported by NSF grants
1345232, 1757207, and 1812628. The views and con-
clusions contained in this document are those of the
authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
sponsoring organizations, agencies, or the U.S. govern-
ment.

References
[Adadi and Berrada 2018] Amina Adadi and Mo-
hammed Berrada. Peeking inside the black-box: A
survey on explainable artificial intelligence (XAI).
IEEE Access, 6:52138–52160, 2018.

[Alvarez Melis and Jaakkola 2018] David Al-
varez Melis and Tommi Jaakkola. Towards robust
interpretability with self-explaining neural networks.
pages 7775–7784, 2018.

[Chakraborti et al. 2017a] Tathagata Chakraborti, Sub-
barao Kambhampati, Matthias Scheutz, and Yu Zhang.
Ai challenges in human-robot cognitive teaming. arXiv
preprint arXiv:1707.04775, 2017.

[Chakraborti et al. 2017b] Tathagata Chakraborti,
Sarath Sreedharan, Yu Zhang, and Subbarao Kamb-
hampati. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In Proceed-
ings of IJCAI, pages 156–163, 2017.

[Cyras et al. 2017] Kristijonas Cyras, Xiuyi Fan, Clau-
dia Schulz, and Francesca Toni. Assumption-based ar-
gumentation: Disputes, explanations, preferences. Jour-
nal of Logics and their Applications, 4(8), 2017.

[Cyras et al. 2019] Kristijonas Cyras, Dimitrios Letsios,
Ruth Misener, and Francesca Toni. Argumentation for
explainable scheduling. In Proceedings of AAAI, 2019.

[Davis et al. 1962] Martin Davis, George Logemann,
Donald, and Loveland. A Machine Program for The-
orem Proving. Communications of the ACM, 5(7):394–
397, 1962.

[Dong et al. 2017] Yinpeng Dong, Hang Su, Jun Zhu,
and Bo Zhang. Improving interpretability of deep neu-
ral networks with semantic information. In Proceedings
of CVPR, pages 4306–4314, 2017.

[Dosilovic et al. 2018] Filip Karlo Dosilovic, Mario Br-
cic, and Nikica Hlupic. Explainable artificial intelli-

8

gence: A survey. In Proceedings of MIPRO, pages 210–
215, 2018.

[Eén and Sörensson 2003] Niklas Eén and Niklas
Sörensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability
testing, pages 502–518. Springer, 2003.

[Fox et al. 2017] Maria Fox, Derek Long, and
Daniele Magazzeni. Explainable planning. CoRR,
abs/1709.10256, 2017.

[Gilpin et al. 2018] Leilani H Gilpin, David Bau, Ben Z
Yuan, Ayesha Bajwa, Michael Specter, and Lalana Ka-
gal. Explaining explanations: An overview of inter-
pretability of machine learning. In Proceedings of
DSAA, pages 80–89, 2018.

[Guidotti et al. 2018] Riccardo Guidotti, Anna Mon-
reale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. A survey of methods for ex-
plaining black box models. ACM Computing Survey,
51(5):93:1–93:42, 2018.

[Helmert 2006] Malte Helmert. The fast downward
planning system. Journal of Artificial Intelligence Re-
search, 26:191–246, 2006.

[Kambhampati 1990] Subbarao Kambhampati. A clas-
sification of plan modification strategies based on cov-
erage and information requirements. In AAAI Spring
Symposium Series, 1990.

[Kautz et al. 1992] Henry A Kautz, Bart Selman, et al.
Planning as satisfiability. In Proceedings of ECAI, vol-
ume 92, pages 359–363, 1992.

[Langley 2016] Pat Langley. Explainable agency in
human-robot interaction. In AAAI Fall Symposium Se-
ries, 2016.

[Lin 2001] Fangzhen Lin. On strongest necessary and
weakest sufficient conditions. Artificial Intelligence,
128(1-2):143–159, 2001.

[Moulin et al. 2002] Bernard Moulin, Hengameh Iran-
doust, Micheline Bélanger, and G. Desbordes. Expla-
nation and argumentation capabilities: Towards the cre-
ation of more persuasive agents. Artificial Intelligence
Review, 17(3):169–222, 2002.

[Petkovic et al. 2018] Dragutin Petkovic, Russ Altman,
Mike Wong, and Arthur Vigil. Improving the explain-
ability of random forest classifier–user centered ap-
proach. In Pacific Symposium on Biocomputing, vol-
ume 23, pages 204–215, 2018.

[Reiter 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[Robinson 1965] John Alan Robinson. A Machine-
Oriented Logic Based on the Resolution Principle.
Communications of the ACM, 5:23–41, 1965.

[Russell and Norvig 2009] Stuart J Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 2009.

[Sreedharan et al. 2018] Sarath Sreedharan, Siddharth
Srivastava, and Subbarao Kambhampati. Hierarchical
expertise level modeling for user specific contrastive ex-
planations. In Proceedings of IJCAI, pages 4829–4836,
2018.

[Tian et al. 2016] Xin Tian, Hankz Hankui Zhuo, and
Subbarao Kambhampati. Discovering underlying plans
based on distributed representations of actions. In Pro-
ceedings of AAMAS, pages 1135–1143, 2016.

[Vaughan et al. 2018] Joel Vaughan, Agus Sudjianto,
Erind Brahimi, Jie Chen, and Vijayan N. Nair. Explain-
able neural networks based on additive index models.
CoRR, abs/1806.01933, 2018.

[Zhang et al. 2017] Yu Zhang, Sarath Sreedharan,
Anagha Kulkarni, Tathagata Chakraborti, Hankz Han-
kui Zhuo, and Subbarao Kambhampati. Plan expli-
cability and predictability for robot task planning. In
Proceedings of ICRA, pages 1313–1320, 2017.

9

Combining Cognitive and Affective Measures with Epistemic Planning for
Explanation Generation

Ronald P. A. Petrick
Department of Computer Science

Heriot-Watt University
Edinburgh, Scotland, United Kingdom

R.Petrick@hw.ac.uk

Sara Dalzel-Job and Robin L. Hill
School of Informatics

University of Edinburgh
Edinburgh, Scotland, United Kingdom

sdalzel@exseed.ed.ac.uk,R.L.Hill@ed.ac.uk

Abstract

This paper presents an overview of the EPSRC-funded
project Start Making Sense, which is investigating explain-
ability and trust maintenance in interactive and autonomous
systems. This project brings together experimental research
in cognitive science involving cooperative joint action with
the practical construction of automated planning tools to ap-
ply to the task of explanation generation. The project’s chal-
lenges are addressed through three concrete objectives: (i)
to study cooperative joint action in humans to identify the
emotional, affective, or cognitive factors that are essential for
successful human communication, (ii) to enhance epistemic
planning techniques with measures derived from the studies
for improved human-like explanation generation, and (iii) to
deploy and evaluate the resulting system with human partic-
ipants. We also describe initial work from the cognitive side
of the project aimed at exploring how ambiguity, uncertainty,
and certain types of biometric measurements impact instruc-
tion giving and explanation actions in scenarios with humans.
The insights from this work will be combined with epistemic
planning techniques to generate appropriate explanatory ac-
tions in similar instruction giving scenarios.

Introduction
A fundamental problem in the design of autonomous sys-
tems is that of action selection: based on the current state
of the world, what action should the system take in order to
achieve its goals? In the presence of humans, this problem
typically becomes more complex: the system may also need
to reason about the states, actions, and intentions of these
agents. In collaborative environments that involve human
communication, it is particularly important to identify, in-
terpret, and understand the multimodal affective signals that
humans employ, and which are often necessary for effective,
successful achievement of communicative goals.

For instance, consider a tourist on a guided walking tour
of a city. After reaching a place where they can see they are
almost back to the starting point, the tour guide says “Let’s
go up that hill,” pointing to a large hill. “We can get a good
view of the city from there.” However, on seeing the tired
expression on the tourist’s face, the guide adds “Or we can
stop at that cafe over there and take a break.” This scenario
has two important features. First, it demonstrates that people
like to be aware of their context and know what is going on.
This is especially true in situations where a decision may not

have been anticipated or expected. Here, an explanation may
be needed not only to justify a decision but also to establish
confidence in that choice: in other words, to trust it. Second,
being able to read the situation and adapt to the needs of the
moment is important when considering the possible actions
that could be taken in a given situation. Here, a decision may
need to be made dynamically. These two features capture the
idea of dynamic trust maintenance, which will be needed
for a broad range of the AI systems that are expected to be
deployed in the near future, e.g., automated vehicles, service
robots, or interactive voice-based assistants.

This paper presents an overview of the EPSRC-funded
project Start Making Sense: Cognitive and Affective Con-
fidence Measures for Explanation Generation Using Epis-
temic Planning,1 which is investigating the need for explain-
ability and trust maintenance in interactive and autonomous
systems. To do so, this project brings together experimen-
tal research in cognitive science involving cooperative joint
action with the practical construction of automated planning
tools, in particular epistemic planning techniques, to apply
to the task of explanation generation. This challenge is be-
ing addressed by tackling three key objectives: (i) to study
cooperative joint action in humans to identify the emotional,
affective, or cognitive factors that are essential for success-
ful human communicative goals; (ii) to enhance epistemic
planning techniques with measures derived from the cogni-
tive science studies; and (iii) to deploy and evaluate the ef-
fectiveness of the resulting system with human participants
in situations that require explanation.

Central to this work is the idea of understanding the af-
fective measures that humans use during activities like in-
struction giving, plan following, and explanation generation;
both when communication is successful but also when it
fails. The goal is to characterise these measures in a form
that enables them to be combined with tools based on epis-
temic planning, an approach that models the changing be-
liefs of the planner and other agents during the plan gener-
ation process. Affective measures will therefore help guide
the planner’s generation process, for instance as a special
type of domain control knowledge or heuristic state infor-
mation, enabling the planner to use this information not only
for task-based action selection, but also to plan appropriate

1http://start-making-sense.org/

actions for communicative goals such as explanation gener-
ation, possibly as a result of dynamic changes in the inter-
active context. As a result, this work is also situated in the
area of explainable planning, a subarea of the recent trend of
research in explainable AI.

In the remainder of the paper we outline our approach and
the project’s main objectives, directions, and goals.

Related Work
Recent developments in artificial intelligence and machine
learning research, such as deep learning, are seen to have
resulted in dramatic improvements in prediction and accu-
racy, but often at the expense of human interpretability. As
a result, there has been a rapid growth in research under the
general banner of explainable artificial intelligence (XAI),
typified by grant funding schemes like DARPA’s XAI pro-
gramme (DARPA 2016) or EPSRC’s Human-Like Comput-
ing Strategy Roadmap (EPSRC 2017), which seek to address
a core need in future systems and to respond to challenges
like the EU’s “Right to Explanation” initiative (Goodman
and Flaxman 2017). Understandably, much work has fo-
cused on the specific concerns around, e.g., deep learning,
rather than on the general need for human-like explanation.

This project instead builds on research in explainable
planning (XAIP) (Fox, Long, and Magazzeni 2017), a sub-
area of XAI and automated planning (Ghallab, Nau, and
Traverso 2004). While techniques like machine learning
make decisions based on mined data, automated planners
traditionally build plans of action by using symbolic causal
models combined with search techniques. XAIP seeks to ad-
dress the challenges of XAI—to build trust and transparency
when interacting with humans (see, e.g., (Miller 2017))—by
leveraging automated planning models and recognising the
role that humans play in the planning loop with respect to
systems deployed with such tools.

XAIP is fast becoming an established recent direction
in the planning community, with a first workshop dedi-
cated to this topic (Magazzeni et al. 2018) appearing at the
2018 International Conference on Automated Planning and
Scheduling (ICAPS).2 While some of the underlying ideas
concerning planning and explainability have a longer his-
tory (Sohrabi, Baier, and McIlraith 2011; Seegebarth et al.
2012), more recent approaches like (Chakraborti et al. 2017;
Sreedharan, Chakraborti, and Kambhampati 2017), have re-
sulted in new directions and new planning algorithms.

Approach
In contrast to most approaches in XAIP, our work combines
research from cognitive science on affective measures used
in human communication, together with recent techniques
in automated planning, notably epistemic planning. In this
section, we briefly highlight the key ideas from these two
areas and how they are being brought together.

Affective Measures in Human Communication
From the cognitive perspective, we build on the view that ef-
fective explanations arise from cooperative joint action and

2http://icaps18.icaps-conference.org/xaip/

efficiently satisfy the goals of human communication. For an
agent (human or artificial) involved in an interaction, infor-
mation exchanged needs to lead to acceptance, comfort, and
trust in their communication partner, if they are to success-
fully influence the interlocutor’s actions. However, the es-
tablishment of trust also depends on the shortcuts, heuristics,
and spontaneous choices that people make in interactions,
which are often based on emotional or affective factors. As
in affective computing more generally, an artificial agent
needs to: (i) detect the signals of its interlocutor’s affective
state; (ii) interpret and understand the meaning behind those
signals to infer conclusions; and (iii) be able to take appro-
priate actions which measurably influence that state.

While confidence and comfort can lead to trust in tech-
nologies (Nass and Brave 2005), there is evidence from in-
struction giving experiments like the HCRC Map Task (An-
derson et al. 1991)3 that have shown that speakers typically
under-explain until things go wrong. Paradoxically, success-
ful response to such a failure may build greater confidence
in listeners than a consistently verbose explanatory approach
which minimises failure rate; similarly, some explanation or
correction strategies can be disorienting or annoying (Foster
et al. 2009; Henderson, Matheson, and Oberlander 2012).
Thus, an important aspect of this project is to understand and
develop the capacity to diagnose and repair failures which
may be signalled only through brief facial expressions, head
movements, or altered body posture.

To this end, the project is conducting user studies with hu-
man participants to understand the affective measures that
are helpful for effective explanation. Initially, data from pre-
vious projects is being used, to study preferred styles in hu-
man explanation generation (Carletta et al. 2010) and error
detection (Hill and Keller 2014). We are also analysing re-
sults on facial expressions and eye-tracking from a current
project attempting to measure believability in political mes-
sages and what motivates people to agree with, and dissem-
inate, them (Cram 2017). The goal is to synthesise these ap-
proaches, adopting mixed methods to collect objective (bio-
metric) and subjective (probe questions) data from individ-
ual participants in new experiments. By capturing and an-
notating conventional linguistic dialogue with paralinguistic
signals (e.g., intonation, hesitation, gesture) and behavioural
signals (e.g., facial expressions), we expect to identify the
best predictors of moment-by-moment shifts in levels of ac-
ceptance, comfort and trust that then be used to help build
more intelligent artificial systems.

Initial Phase of the Empirical Cognitive Research
The first phase of empirical cognitive research on the project
aims to confirm the range of human social signals, affec-
tive responses, and behavioural patterns exhibited during
co-operative joint action in a shared audio-visual environ-
ment. As a starting point, an instruction giving and follow-
ing scenario is considered based on an enhanced version of
the HCRC Map Task (Anderson et al. 1991) paradigm, to
simulate navigation with instruction giving and following.
In the standard version of the Map Task, an instruction giver

3http://groups.inf.ed.ac.uk/maptask/

Figure 1: A sample instruction giver map from the enhanced
Map Task with an image of a human follower displayed.

Figure 2: A sample instruction giver map from the enhanced
Map Task with an artificial avatar follower displayed.

guides an instruction follower around a map using land-
marks. Importantly, the maps of the instruction giver and
follower are not aligned: landmarks may be in different lo-
cations or in some cases completely different landmarks are
present. The task therefore provides opportunities to study
how humans communicate and recover from problems in
such scenarios. In our enhanced version, we make one crit-
ical change: the interlocutors will be clearly visible to each
other. These experiments will be used to determine the in-
dicators of successful (or unsuccessful) communication pro-
duced during the dynamic process rather simply generating
a measure upon completion of the task. In other words, we
are proposing a system of continuous monitoring and mea-
surement suitable for agile prediction and adaptive planning.

In the first round of experiments, human participants will
observe another human comprehending and responding to
their directions in real-time (see Figure 1). Thus, the instruc-
tion giver can modify the dialogue based on behavioural
feedback and determine the level of success for themselves,
e.g. whether the instruction follower is looking at the correct
target, has a confused expression or exhibits some other cue.
The next set will examine whether human-like behaviour
is sufficient to produce the same results or whether every
aspect of the interaction needs to be human. To begin un-
derstanding this side of the interaction process the same ba-
sic paradigm will be adopted, only this time the instruction
follower will appear as an artificial avatar (see Figure 2).
Critically, however, the avatar is actually generated from the
responses of a human recorded by a video camera or web-
cam. Thus, while the responses may appear to be artificial,

action ask-location(?a : agent)
preconds: K(interact = ?a) &

!K(requestLoc(?a)) &
!K(otherAttentionRequests)

effects: add(Kf,requestLoc(?a)),
add(Kv,request(?a))

action give-directions(?a : agent, ?l : loc)
preconds: K(interact = ?a) &

K(requestLoc(?a)) &
Kv(request(?a)) &
K(request(?a) = ?l) &
!K(otherAttentionRequests)

effects: add(Kf,requestAnswered(?a))

Figure 3: Actions for a direction giving agent.

the underlying behaviour is genuinely human and presented
through what is essentially a motion-capture system. Ulti-
mately, synthetic stimuli which are generated from our com-
putational models and contingent on the evolving interac-
tion and dialogue will also be tested. These artificial agents
will need to portray authentic communication by combining
both the fundamental aspects of two-way interaction (com-
prehension and production): correctly interpreting and un-
derstanding observed human behaviour; as well as display-
ing appropriate human-like reactions.

Epistemic Planning
The main technical tool employed in this project is a re-
cent approach to automated planning (Ghallab, Nau, and
Traverso 2004), called epistemic planning (Bolander 2017),
which can be used for action selection in state-based, goal-
directed systems that operate in the presence of other agents
(human or artificial). Traditional automated planners focus
on solving the problem of finding an ordered sequence of
actions (a plan) that, when chained together, transform an
initial state into a state where a set of specified goal objec-
tives are achieved. Planning problems are usually described
in a symbolic form that specifies the objects, actions, states,
and goals that make up the planner’s operating environment.
A central goal of planning research is to build general pur-
pose or domain-independent planning systems that are able
to solve a range of planning problems in different domains,
rather than just a single problem in a particular domain.

Epistemic planning builds on standard automated plan-
ning approaches and attempts to model how the knowledge
and beliefs of agents evolve during the planning process.
In this project, plans are generated using PKS (Planning
with Knowledge and Sensing) (Petrick and Bacchus 2002;
2004), an early epistemic planning system.

For instance, Figure 3 shows an example of two actions
defined in PKS’s modelling language for a simple direction
giving agent. Here, ask-location models an information-
gathering action that asks another agent for a location they
are trying to reach, while give-directions describes an
action for supplying a response when such information is
provided. Actions are described by their preconditions (the
conditions that must be true for an action to be applied) and

Plan Description
greet(a1) Greet agent a1
ask-location(a1) Ask a1 for a location
ack-request(a1) Acknowledge a1’s request
give-directions(a1, Respond to a1’s request

request(a1))
bye(a1). End the interaction

Table 1: A plan for giving directions to an agent.

action ask(?x,?y,?p)
preconds: ¬K[?x]?p & K[?x]K[?y]?p
effects: add(Kf,K[?y]¬K[?x]?p)

action tell(?x,?y,?p)
preconds: K[?x]?p & K[?x]¬K[?y]?p
effects: add(Kf,K[?y]?p)

Figure 4: Actions with nested multiagent beliefs.

their effects (the changes the action makes), where refer-
ences like K(...) are queries of the planner’s beliefs. The
planner uses these actions to form plans by chaining together
ground actions instances to achieve the goals of the planning
problem. Table 1 shows a possible plan that could be gener-
ated by PKS for interacting with a human agent requesting
directions to a given location.

An important feature of most epistemic planners is their
ability to reason with multiagent beliefs: information about
other agents that is often nested (e.g., “agent A believes
agent B believes P”) (Fagin et al. 1995). This is a challeng-
ing problem for automated planners which must provide a
solution that is both expressive enough to model a variety of
problems while being efficient enough to be implemented in
a manner that does not negatively affect the plan generation
process. PKS does this by restricting the form of the rep-
resentation used by the planner and keeping the reasoning
language simple (Steedman and Petrick 2007). An example
of actions encoded in this way is given in Figure 4 (where
K[?x]p denotes the idea that “agent ?x knows p”).

Epistemic planners like PKS therefore provide us with
powerful tools for building systems that can perform ac-
tion selection with complex reasoning about other agents
and their beliefs. For instance, PKS has previously been
used for generating plans in task-based scenarios that re-
quire socially-appropriate human-robot interaction (Petrick
and Foster 2013), and that involve multiple humans.

Explanation Generation
The main technical contribution on this project is to use and
enhance an epistemic planner like PKS with intuitions from
the cognitive science studies to generate plans which inher-
ently contain more human-like explanations. The goal is to
not only generate interactive plans like in Table 1, but to also
generate the necessary plan explanations, if required, during
the epistemic planning process. Since epistemic planners are
capable of reasoning about the beliefs of other agents, we
can use the planner’s belief about a human agent’s knowl-

edge (or lack thereof) of different steps in a plan to auto-
matically drive the explanation generation process. (For in-
stance, if the give-directions action involves locations
that are believed to be unknown to the human, appropriate
explanation can be built into the plan.)

The key technical challenge here is to make the genera-
tion process fast while still producing high-quality plans. To
do this, the identified affective measures from the cognitive
science studies will serve as a type of heuristic to inform and
guide the plan generation process and appropriately rank the
generated plans. Part of this work therefore involves identi-
fying an effective set of measures that can be captured in the
planner’s representational language, to ensure that relevant
scenarios can be modelled with the planner.

Evaluation of the resulting system with human partici-
pants is also essential to establish that the resulting plans
achieve their expected behaviour. While we will perform
standard planning benchmark tests to establish the correct-
ness, quality, and efficiency of the resulting planning system,
we also aim is to keep the human in the loop throughout,
using situations like the tour guide or direction giving sce-
narios, to evaluate response detection and adaptive planning
techniques using Wizard-of-Oz and Ghost-in-the-Machine
experiments (Janarthanam et al. 2014; Loth et al. 2015).

Conclusions
Combining planning and human interaction, especially in
collaborative settings, presents several important challenges
that must be addressed due to the necessary presence of hu-
mans in the planning loop (Kambhampati and Talamadupula
2015): human activities must be taken into consideration,
plans must ensure humans and artificial systems are able
to work together effectively for efficient task completion,
and plan decisions and effects should be communicated in
a manner that improves trust and transparency. This project
aims to make contributions in all of these areas. Most im-
portantly, this project places understanding the human expe-
rience at the heart of its approach to building tools for ex-
plainable epistemic planning, and we have taken a first step
in this direction through a series of initial experiments based
on the HCRC Map Task paradigm. By basing our techni-
cal extensions on affective insights from human studies, and
evaluating the result of our tools on human participants, we
believe the resulting epistemic planning tools will lead to in-
teractive and autonomous systems that are better prepared
for and more acceptable to the expectations of humans.

Acknowledgements
We are indebted to our friend and colleague, Jon Oberlander
(http://homepages.inf.ed.ac.uk/jon/), who
helped shape this project but whose unexpected passing in
2017 means that we must proceed without his invaluable
collaboration. Jon will be sorely missed and this project is
dedicated to his memory.

This work is funded by the UK’s EPSRC Human-Like
Computing programme under grant number EP/R031045/1.

References
Anderson, A.; Bader, M.; Bard, E.; Boyle, E.; Doherty,
G. M.; Garrod, S.; Isard, S.; Kowtko, J.; McAllister, J.;
Miller, J.; Sotillo, C.; Thompson, H. S.; and Weinert, R.
1991. The HCRC Map Task Corpus. Language and Speech
34:351–366.
Bolander, T. 2017. A Gentle Introduction to Epistemic Plan-
ning: The DEL Approach. arXiv 1703.02192.
Carletta, J.; Hill, R. L.; Nicol, C.; Taylor, T.; Ruiter, J. P. d.;
and Bard, E. G. 2010. Eyetracking for two-person tasks with
manipulation of a virtual world. Behavior Research Methods
& Instrumentation 42:254–265.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI).
Cram, L. 2017. Citizens’ expectations on brexit outcomes:
‘fact’ transmission and persuasive power in a digital world,
ESRC Project.
DARPA. 2016. Explainable Artificial Intelligence
(XAI) Program, http://www.darpa.mil/program/explainable-
artificial-intelligence.
EPSRC. 2017. A strategy roadmap for human-like comput-
ing, https://www.epsrc.ac.uk/newsevents/pubs/human-like-
computing-strategy-roadmap.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. Cambridge, MA, USA: MIT
Press.
Foster, M. E.; Giuliani, M.; Isard, A.; Matheson, C.; Ober-
lander, J.; and Knoll, A. 2009. Evaluating description and
reference strategies in a cooperative human-robot dialogue
system. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. In Proceedings of the IJCAI Workshop on Explain-
able AI.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Goodman, B., and Flaxman, S. 2017. European Union reg-
ulations on algorithmic decision-making and a “right to ex-
planation”. AI Magazine 38(3).
Henderson, M.; Matheson, C.; and Oberlander, J. 2012. Re-
covering from non-understanding errors in a conversational
dialogue system. In Proceedings of the Workshop on the
Semantics and Pragmatics of Dialogue (SemDial).
Hill, R., and Keller, F. 2014. Error detection in native and
non-native speakers provides evidence for a noisy channel
model of sentence processing. In Proceedings of the 27th
Conference on Human Sentence Processing (CUNY).
Janarthanam, S.; Hill, R.; Dickinson, A.; and Fredriksson,
M. 2014. Click or type: an analysis of wizard’s interaction
for future wizard interface design. In Proceedings of EACL
Workshop on Dialogue in Motion, 19–27.

Kambhampati, S., and Talamadupula, K. 2015. Human-
in-the-loop planning and decision support. In AAAI 2015
Tutorial Forum.
Loth, S.; Jettka, K.; Giuliani, M.; and De Ruiter, J. P. 2015.
Ghost-in-the-Machine reveals human social signals for HRI.
Frontiers in Psychology 6.
Magazzeni, D.; Smith, D.; Langley, P.; and Biundo, S. 2018.
XAIP 2018: Proceedings of the 1st ICAPS Workshop on Ex-
plainable Planning. ICAPS.
Miller, T. 2017. Explanation in artificial intelligence: In-
sights from the social sciences. Computing Research Repos-
itory abs/1706.07269.
Nass, C., and Brave, S. 2005. Wired for Speech: How Voice
Activates and Advances the Human-Computer Relationship.
MIT Press.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sens-
ing. In Proceedings of the International Conference on Ar-
tificial Intelligence Planning and Scheduling (AIPS), 212–
221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 2–11.
Petrick, R. P. A., and Foster, M. E. 2013. Planning for so-
cial interaction in a robot bartender domain. In Proceed-
ings of International Conference on Automated Planning
and Scheduling (ICAPS), 389–397.
Seegebarth, B.; Muller, F.; Schattenberg, B.; and Biundo,
S. 2012. Making hybrid plans more clear to human users
- a formal approach for generating sound explanations. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS).
Sohrabi, S.; Baier, J.; and McIlraith, S. 2011. Preferred
explanations: Theory and generation via planning. In Pro-
ceedings of AAAI.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2017.
Balancing explicability and explanation in human-aware
planning. In Proceedings of the AAAI Fall Symposium on Ar-
tificial Intelligence for Human-Robot Interaction (AI-HRI).
Steedman, M., and Petrick, R. P. A. 2007. Planning dialog
actions. In Proceedings of SIGdial, 265–272.

A General Framework for Synthesizing and Executing
Self-Explaining Plans for Human-AI Interaction

Sarath Sreedharan1, Tathagata Chakraborti2, Christian Muise2 , Subbarao Kambhampati1

1CIDSE, Arizona State University, Tempe, AZ 85281 USA
2IBM Research AI, Cambridge, MA, USA

ssreedh3@asu.edu, tathagata.chakraborti1@ibm.com, christian.muise@ibm.com, rao@asu.edu

Abstract
In this work, we present a general formulation
for decision making in human-in-the-loop planning
problems where the human’s expectations about
an autonomous agent may differ from the agent’s
own model. We show how our formulation for such
multi-model planning problems allows us to cap-
ture existing approaches to this problem and also be
used to generate novel explanatory behaviors. Our
formulation also reveals a deep connection between
multi-model planning and epistemic planning and
we show how we can leverage classical planning
compilations designed for epistemic planning for
solving multi-model planning problems. We empir-
ically show how this new compilation provides a
computational advantage over previous approaches
that separate reasoning about model reconciliation
and identifying the agent’s plan.

1 Introduction
As automated agents and users start working closely together,
it becomes increasingly important that the agents are capable
of acting in a manner that is intuitive and explicable to users
in the loop. A major challenge to achieving such fluent col-
laboration is the fact that the human’s expectations regarding
the agent’s capabilities and preferences may differ from re-
ality. Such knowledge asymmetry implies that even in cases
where the human teammate is a passive observer, the agent
can no longer solely reason with their individual models to
generate desirable plans. Instead, the agent needs to explic-
itly take into account the user’s expectations about the agent
when coming up with its plans. Previous works have mostly
focused on two strategies to handle such scenarios, (a) ex-
planation - the agent chooses to perform its optimal plan and
explain the effectiveness of the chosen plan; (c.f [Chakraborti
et al., 2017]) (b) explicable planning - the agent chooses to
follow viable plans that are closest to user’s expectations (c.f
[Zhang et al., 2017]).

In the end, we would want an approach that is able to com-
bine the strengths of these two strategies. This would require
the agent to move away from standard notions of decision
making where the agent is solely trying to optimize the cost
of the plan it will follow, but also take into account the ease

of explaining the plan as one of the criteria for choosing its
actions. We will refer to the problem of generating such plans
as multi-model planning.

In this work, we will present a general characterization of
the problem of multi-model planning and discuss how we
could view the solutions to such multi-model planning prob-
lems as self-explaining plans, where explanations are them-
selves provided through robot actions. These actions could
be purely communicative actions that are meant to update the
human’s mental model or task level actions that could also
have epistemic side effects. The contributions of this paper
include,

• Presenting a formalization of multi-model planning that
allows us to characterize solutions identified by earlier
works (Section 2).

• We look at two additional problem considerations; the
phase of interaction (is the explanation occurring during
plan selection or is it happening during plan execution);
the attentiveness of the user (Section 5) and discuss how
such considerations poses both new challenges and pro-
vides us with opportunities to generate novel behaviors.

• We present a new planning compilation to solve such
planning problems that allows for a uniform treatment of
explanation and task level actions. We empirically show
how such a compilation could provide a computational
advantage (Sections 6 and 7).

We will use Urban Search and Rescue domain as a running
example to motivate and illustrate the discussions.

2 Multi-Model Planning and Explanation as
Model Reconciliation

The planning models used by both the human and the robot
are described by the tupleM = 〈F,A, I,G〉. In this formula-
tion, F is the set of propositional fluents used to describe the
planning task states,A the set of actions, I the initial state and
G the goal. Each action a ∈ A is further defined as a tuple of
the form a = 〈preca, addsa, delsa〉, where preca lists the pre-
conditions of the action and addsa and delsa provides the add
and delete effects of the action. In general, the precondition
can be some logical formula defined over state fluents and an
action a can only be executed in a state S if S |= preca. The
effects are generally of the form c→ e, where the antecedent

Figure 1: An overview of planning in multi-model planning
settings.

represents the condition under which the effect e should be
applied (where the fluent corresponding to e is set true in the
state if c → e is part of the add effects and if it is part of the
delete it is set to false).

Each action is also associated with a cost (represented
as CM(a)). A plan in this setting is defined as a sequence
of actions (π = 〈a1, ..., an〉) and is said to be valid (de-
noted as π(I) |=M G) for a model M if G ⊆ π(I). Each
plan is additionally associated with a cost CM(π) such that
CM(π) =

∑n
i=1 CM(ai). A plan π is said to be optimal if

there exist no valid plan π′ such that CM(π′) < CM(π). We
will use Π∗M to represent the set of all plans optimal forM.

In this setting we will assume that the robot uses a model
MR = 〈F,AR, IR, GR〉 and the human evaluates the plan
using a modelMH = 〈F,AH , IH , GH〉. For ease of discus-
sion, we concentrate on the specific case where conditions
for actions only consist of conjunction of positive literals and
with no action cost difference between models.

We start with the assumption that the robot is aware ofMH

and hence knows whether a given plan πR (that is optimal
in MR) is explicable or not, i.e, whether or not the human
would identify πR to be one of the optimal plans for the given
planning problem. In cases where the given plan may appear
inexplicable, one way the robot could resolve the confusion
would be by informing the human about its own model so
they can correctly evaluate the current plan. Thus an explana-
tion (E) for this setting can be represented by a set of model
updates (where E represents the set of all possible model up-
dates). The different types of model updates include –
(1) Turn a fluent p true or false in initial state (represented by
the operator {add/remove}-p-from-I)
(2) Add or remove a fluent p from the precondition (also
add or delete) list of an action a (represented by the opera-

tor {add/remove}-p-from-prec-of-a)
(3) Add or remove a fluent p from the goal list (represented
by the operator {add/remove}-p-from-G)

We will use the function T : M × E → M to represent
the transition function induced by the model update messages
(where M represents the set of all possible models). A set of
model updates (E) explains a given plan if in the model re-
sulting from applying the model updates (M̂ = T (MH , E)) ,
the current plan is optimal (i.e., πR ∈ Π∗M̂). Unless otherwise
mentioned, when we refer to updated model, we are refer-
ring to this new human model obtained by applying the expla-
nations. Once we have such a set of model updates, the final
explanation (presented to the explainee) can be generated by
converting the model updates to corresponding natural lan-
guage statements [Tellex et al., 2014] or through some ap-
propriate visualization [Chakraborti, Sreedharan, and Kamb-
hampati, 2018a].

Among the valid explanations for a given plan, we refer to
the shortest explanation as the minimally complete explana-
tion or MCE. The original work [Chakraborti et al., 2017] on
model reconciliation viewed the problem of generating MCE
explanation as a problem of searching over the space of possi-
ble model updates that can be performed on the human model
and the validity of each possible explanation was measured by
checking the optimality of the plan in the corresponding plan-
ning problem. Before we go into more details, let us briefly
look at the urban search and rescue (USAR) domain that will
act as the running example for the rest of the paper.

3 Urban Search and Rescue
USAR presents an ideal testbed for research on explainable
planning as it looks at cases where the decision to follow sub-
optimal or in-executable plan can be potentially disastrous,
yet limitations in communications capability could prevent
the agents from providing detailed explanations.

The basic scenario consists of an autonomous agent that
has been deployed to the disaster scene and an external com-
mander who is monitoring the activities of the robot. Both
agents start with the same model of the world (i.e the map of
the building before the disaster) but the models diverge over
time owing to the fact that robot has access to more accu-
rate information about the current status of the building. This
model divergence could lead to the commander incorrectly
evaluating valid robot plans as sub-optimal or unsafe. One
way to satisfy the commander would be to point out possible
changes to it’s model that led the robot to come up with the
plan in the first place.

Figure 2 illustrates a typical scenario where the robot needs
to travel from P1 to its goal at P15. Here the human be-
lieves the robot should be moving to waypoint P6 and follow
that corridor to go to P15, while the robot knows it should
be moving to P7. This disagreement rises from the fact that
the human incorrectly believes that the path from P6 to P5
is clear while that from P8 to P12 is blocked. If the robot
were to follow the explanation scheme that was established
in [Chakraborti et al., 2017] then the robot would stick to its
own plan and provide the following explanation –

> remove- (c l e a r p6 p5) -from- I

Figure 2: The basic robot and human maps. The robot starts at P1 and needs to go to P15. The human incorrectly believes that
the path from P6 to P5 is clear and the one from P8 to P12 is blocked. Both agents know that there are some movable rubble
between P9 and P10 that can be moved with the help of a costly clear passage action.

(i . e . , Pa th from P6 t o P5 i s b l o c k e d)
> add- (c l e a r p8 p12) - t o - I

(i . e . , Pa th from P8 t o P12 i s c l e a r)

4 Multi-Model Planning
In this work, we will be looking at the more general case
where we are interested in identifying both the agent plan and
the relevant explanation, and we will refer to this problems as
multi-model planning
Definition 1. A multi-model planning problem is defined by
the tuple Ψ = 〈MR,MH , T 〉, where MH is the human
model,MR the robot model and T is the transition function.
A solution to the problem Ψ is given by the tuple 〈EΨ, πΨ〉,
where EΨ is set of model updates and πΨ a plan, such that
πΨ(IMR

) |=MR
GMR

and πΨ(I(T (MH ,EΨ)) |=T (MH ,EΨ)

GT (MH ,EΨ).
The above problem only deals with cases where we care

about establishing the validity of a robot plan in the human
model. The above problem is already PSPACE-complete 1,
but we need to go beyond just finding valid solutions to find-
ing explanations that establish the optimality of a robot plan
in the human model.
Definition 2. The tuple 〈EΨ, πΨ〉 is said to be a complete
solution for the problem Ψ if πΨ ∈ Π∗MR

and πΨ ∈
Π∗T (MH ,EΨ).

The use of the term complete here is in accordance with it’s
use in [Chakraborti et al., 2017]. EΨ constitutes an MCE for a
plan πΨ when there exists no solution of the form 〈EΨ

2 , πΨ〉,
such that CE(EΨ

2) < CE(EΨ), where CE is the cost of pro-
viding an explanation. The use of complete solutions are best
suited for cases, where the agents choose to stick to a plan
that is optimal and explain away any confusion an observer
may have regarding the chosen plan. While the agent could
choose to follow the optimal plan that is easiest to explain,

1We can compile plan existence problems into a model reconcil-
iation problem and as shown in section 6 we can compile the prob-
lem of finding a solution to plan existence in a conditional planning
problem which is again PSPACE hard [Nebel, 2000]

in many scenario, communicating the explanation could still
constitute a considerable expense on the agent’s part. It may
in fact be more desirable for the agent to follow a sub-optimal
plan if the choice of plan results in lower cost for transmitting
the explanations. This is a trade-off we make frequently in
our day-to-day life and it would be desirable for an explicable
agent to be capable of balancing these two sources of cost (i.e
the cost of the plan being followed and the cost of communi-
cating the corresponding explanations) [Chakraborti, Sreed-
haran, and Kambhampati, 2018b].
Definition 3. For a problem Ψ, the tuple 〈EΨ, πΨ〉 is said to
be the optimal balanced explicable solution if,

1. πΨ(IR) |= GR.
2. πΨ ∈ Π∗T (MH ,EΨ).

3. @〈Ê , π̂〉, such that the tuple satisfies (1.) and (2.), and
C(Ê) + CMR

(π̂) < C(EΨ) + CMR
(πΨ).

In the USAR domain, to choose a balanced plan the robot
can follow the path through P9 that also involves clearing the
movable rubble between P9 and P10. In this case the robot
only needs to provide a single explanation.

> remove- (c l e a r p6 p5) -from- I
(i . e . , Pa th from P6 t o P5 i s b l o c k e d)

The original work that studied the problem of balancing
(c.f [Chakraborti, Sreedharan, and Kambhampati, 2018b])
used an additional hyperparameter α, that captures the agent’s
relative preference to providing explanations versus follow-
ing a costlier explicable plan. In our formulation, we assume
that such preferences are automatically captured by the cost
of the explanation. This formulation allows us to better cap-
ture the fact that certain aspects of the model may be harder
to communicate than others. Conceptually, this formulation
should also allow us to include the effort required at the user’s
end into the explanation cost, but capturing such considera-
tions faithfully would require us to go beyond simple additive
models cost explanation cost and so we will ignore them in
the current work.

Note that the above formulation looks for solutions where
the given plan is completely explicable to the user. In fact

the above formulation doesn’t allow for the generation of
purely explicable plans of the type discussed in [Kulkarni et
al., 2019; Zhang et al., 2017], which tries to identify plans
closest to the human optimal plan without relying on any ex-
planations. In many cases, generating such plans that may just
be “good-enough” may be more desirable to the agent than
always trying to stick to completely explainable plans (at the
cost of providing more explanation). We can do this by en-
suring that the agent could include the extend of inexplica-
bility of a given plan as yet another metric to consider when
generating its plans rather than holding it as hard constraint.
Assuming that the degree of inexplicability of the plan is di-
rectly proportional the degree of suboptimality of the plan in
the human model, we can define an optimal balanced solution
as follows.

Definition 4. For a problem Ψ, the tuple 〈EΨ, πΨ〉 is said to
be the optimal balanced solution if,

1. πΨ(IR) |= GR.

2. @〈Ê , π̂〉, such that the tuple satisfy (1.) and
(C(Ê) + CMR

(π̂) + β ∗ (CT (MH ,Ê)(π̂) −
CT (MH ,Ê)(π

∗
1))) < (C(EΨ) + CMR

(πΨ) + β ∗
(CΨ
T (MH ,E)(π̂)− CΨ

T (MH ,E)(π
∗
2)))

where π∗1 ∈ Π∗T (MH ,Ê)
and π∗1 ∈ Π∗T (MH ,EΨ) and β

captures the degree of penalty imposed by inexplicability
of the given plan.

While the current work uses the difference of cost as the
measure of inexplicability, one could have use other plan dis-
tances (or a combination) as standin for this measure. This is
especially helpful when the user’s model/preferences are not
completely known.

5 Additional Considerations
Now that we have defined some of the problems and solu-
tion concepts that have been covered in earlier works, we will
now cover some additional problem considerations related to
multi-model planning that has been previously ignored.

5.1 The Stage of Interaction
An important factor we have more or less ignored in previous
sections (and for that matter most of the previous works in
model reconciliation) is whether the system is providing an
explanation for a plan that has it has proposed or is the sys-
tem providing post-hoc explanation for some plan that it has
just executed (we will refer to such scenarios as explaining
behaviors). One may be tempted to argue that this distinc-
tion is unnecessary if we are limiting our attention to com-
pletely specified sequential plans in deterministic domains,
but the fact that the user is viewing a plan being executed
gives us opportunities to simplify explanation that may just
not be available when the user and the system are deliber-
ating over a proposed plan. In particular, we could use the
agents actions (the fact they were successfully executed and
their effects) to help shape the user’s perception about the task
and the agent’s capabilities. For example, the robot opening
a door is enough to inform the human that the door was not

locked in the first place and does not require a separate com-
munication action or the robot could go through a passage to
show to the human that the passage was not blocked. Thus in
these multi-model settings, we need to allow for the fact that
these actions not only have an effect on the task level state (i.e
ontic effects) but may also have epistemic effects on the user’s
mental models. We could go one further step and treat all ex-
planations as executing actions with epistemic effects. This
means that model-reconciliation planning is in fact an epis-
temic planning problem. Previous works such as [Muise et al.,
2015] have shown how certain subsets of epistemic planning
problem can be compiled to classical planning problems. In
the following sections, we will discuss how we can leverage
similar compilation schemes to capture multi-model planning
problems and show how such methods provide us with com-
putational advantages over methods that separate reasoning
about explanations and the task level plans.

5.2 User’s Attention
An assumption made by many of the earlier works is the fact
that the human observer is a perfect listener. Which means
that once the explanation is provided she will definitely in-
clude it in her reasoning. Unfortunately, this is not true in
most cases. The human’s ability to understand the explana-
tion may depend on factors like the hardness of the concept
being explained (for eg: explaining the robot’s reach in terms
of motion constraints vs the ability for the robot to pick up
heavy objects) and the mode of explanation (a simple visual-
ization vs natural language) and even the cognitive load of the
listener. A more realistic approach would require us to model
the fact that the user may not necessarily consider some in-
formation even when it is presented to them. The system may
need to repeat its explanatory messages or use simpler expla-
nations. Computing such strategies would require us to move
to formulations that allows for non-deterministic or stochas-
tic transitions for explanatory messages. In subsection 6.4, we
discuss how our new formulation can be extended to support
such scenarios.

6 Compilation
To support planning with explanatory actions, we will adopt
a formulation that is similar to the one introduced in [Muise
et al., 2015] to compile reasoning about epistemic states into
a classical planning problem.In our setting, each explanatory
actions can be viewed as an action with an epistemic effect.
One interesting distinction to make here is the fact that the
human’s belief state now not only includes their belief about
the task state but also their belief about the robot’s model.
This means that the planning model will need to separately
keep track of (1) the current robot state, (2) the human’s belief
regarding the current state, (3) how actions would effect each
of these (as humans may have differing expectations about the
effects of each action) and (4) how those expectations change
with explanations.

Given the model reconciliation planning problem Ψ =
〈MR,MH〉, we will generate a new planning modelMΨ =
〈FΨ, AΨ, IΨ, GΨ〉 as follows FΨ = F ∪ FB ∪ Fµ ∪ {G, I},
where FB is a set of new fluents that will be used to capture

the human’s belief about the task state and Fµ is a set of meta
fluents that we will use to capture the effects of explanatory
actions and G and I are special goal and initial state propo-
sitions. We will use the notation B(p) to capture the human’s
belief about the fluent p. We are able to use a single fluent to
capture the human belief as we are specifically dealing with
a scenario where the human’s belief about the robot model is
fully known. In this case, we also do not require any of the
additional rules that were employed in [Muise et al., 2015]
to ensure that the state captures the deductive closure of the
agent beliefs.
Fµ will contain an element for every part of the human

model that can be changed by the robot through explanations.
A meta fluent corresponding to a literal φ from the precon-
dition of an action a takes the form of µ+(φpreca), where the
superscript + refers to the fact that the clause φ is part the pre-
condition of the action a in the robot model (for cases where
the fluent represents an incorrect human belief we will be us-
ing the superscript −).

For every action a = 〈preca, addsa, delsa〉 ∈ AR and its
human counterpart ah = precah , addsah , delsah ∈ AH , we
define a new action aΨ = 〈precaΨ , addsaΨ , delsaΨ〉 ∈ MΨ

whose precondition is given as –

precaΨ = precaR∪{µ+(φpreca)→ B(φ)|φ ∈ precaR\precaH}
∪ {µ−(φpreca)→ B(φ)|φ ∈ precaH \ precaR}

∪ {B(φ)|φ ∈ precaH ∩ precaR}

The important point to note here is that at any given state, an
action in the augmented model is only applicable if the ac-
tion is executable in robot model and the human believes the
action to be executable. Unlike the executability of the action
in the robot model (captured through unconditional precondi-
tions) the human’s beliefs about the action executability can
be manipulated by turning the meta fluents on and off.

The effects of these actions can also be defined similarly.
In addition to these task level actions (represented by the set
Aτ), we can also define explanatory actions (Aµ) that either
add µ+(∗) fluents or delete µ−(∗).

Special actions a0 and a∞ that are responsible for setting
all the initial state conditions true and checking the goal con-
ditions are also added into the domain model. a0 has a single
precondition that checks for I and has the following add and
delete effects –

addsa0 = {> → p | p ∈ IR} ∪ {> → B(p) | p ∈ IH}
∪ {> → p | p ∈ Fµ−}

delsa0 = {I}
where Fµ− is the subset of Fµ that consists of all the fluents
of the form µ−(∗). Similarly, the precondition of action a∞
is set using the original goal and adds the proposition G.

preca∞ = GR ∪ {µ+(pG)→ B(p) | p ∈ GR \GH}∪
{µ−(pG)→ B(p) | p ∈ GH \GR} ∪ {B(p) | GH ∩GR}

Finally the new initial state and the goal specification be-
comes IE = {I} and GE = {G} respectively. To see how
such a compilation would look in practice, consider an action
(move from p1 p2) that allows the robot to move from point
p1 to p2 only if the path is clear. The action is defined as
follows in the robot model.

(: a c t i o n move from p1 p2
: p r e c o n d i t i o n (and (a t p 1)

(c l e a r p 1 p 2))
: e f f e c t (and (n o t (a t p 1))

(a t p 2)))

Let’s assume the human is aware of this action but doesn’t
know that they need to care about the status of the path (as
they assume the robot can move through any debris filled
path). In this case, the corresponding action in the augmented
model and the relevant explanatory action will be

(: a c t i o n move from p1 p2
: p r e c o n d i t i o n
(and

(a t p 1) (B ((a t p 1))) (c l e a r p 1 p 2)
(i m p l i e s

(µ+
prec (move from p1 p2 ,

(c l e a r p 1 p 2)))
(B ((c l e a r p 1 p 2)))))

: e f f e c t
(and (n o t (a t p 1)) (a t p 2)

(n o t B (a t p 1))
B (a t p 2))))

(: a c t i o n e x p l a i n µ+
prec m o v e f r o m c l e a r

: p r e c o n d i t i o n
(and)
: e f f e c t
(and µ+

prec (move from p1 p2 ,
(c l e a r p 1 p 2))))

We will refer to an augmented model that contains an ex-
planatory action for each possible model update and has no
actions with effects on both the human’s mental model and
the task level state as the canonical augmented model.

Given an augmented model, let πE be some plan that is
valid for this model (πE(IΨ) ⊆ GΨ). From πE , we extract
two types of information – the model updates induced by the
actions in the plan (represented as E(πE)) and the sequence of
actions that have some effect of the task state (henceforth re-
ferred to as actions with ontic effects) represented as D(πE).
Note that E(πE) may contain effects from action in D(πE).
This brings us to the following proposition –

Proposition 1. Given a multi-model planning problem Ψ and
the corresponding augmented modelMΨ, then for any plan
π(IΨ) |=Ψ GΨ, the tuple 〈E(π),D(π)〉 is a valid solution for
Ψ.

This result can be trivially shown to be true given the above
formulation. Unfortunately, the compilation on it’s own only
takes care of generating plans along with the justifications for
correctness of the plan. In many cases, the user would also be
interested in understanding why the given plan is optimal.

Claim 1. Given a multi-model planning problem Ψ and the
corresponding augmented model MΨ, then there exists a
plan π(IΨ) |=Ψ GΨ, such that the tuple 〈E(π),D(π)〉 is a
complete solution for Ψ but π may not be optimal forMΨ.

The first part of the claim comes from the fact that the space
of valid plans forMΨ spans the entire set of valid plans for
the robot model and the set of all possible model updates. On
the other hand, due to the structure of the preconditions, for a
given a set of model updates, there may be plans that are valid
in the human model that never gets expanded. This means
when the search comes up with a plan π∗ that is optimal for
MΨ, it is possible thatMH+E(π∗) could have plans cheaper
than D(π∗), that were not expanded as they were invalid in
the robot model.

6.1 Planning For Complete Solutions Using
Augmented Model

A way to generate complete solutions would be by updating
the goal test used by the search. In addition to checking if
the goal facts are indeed met in the resultant state, we would
now also need to check that the plan is in fact optimal in the
updated model. Note that this is an inversion of the search
in [Chakraborti et al., 2017] with the added advantage that
we are explicitly reasoning with explanatory actions and only
check for plan optimality in human models that are guaran-
teed to support at least one robot executable plan. Further-
more, if we memoize the results of each secondary search
with respect to E(π), we can guarantee that the number of
optimality tests will be less than or equal to the number of
tests required by the earlier approach. Given the nature of this
suboptimality test, it should be possible to leverage methods
like search space reuse to speed up search, but since our focus
here is on establishing the properties of the simplest formula-
tion we will focus on cases that use a simple optimality test.

The next question to ask would be, under what conditions
can this new encoding be guaranteed to generate explanations
that are minimally complete. Before we formally state the
conditions, let us define a new concept called optimality gap
(denoted as ∆πM) for a planning model, which captures the
cost difference between the optimal plan and the second most
optimal plan. ∆πM can be defined as –

∆πM = max{v | v ∈ R∧ 6 ∃π1, π2((0 < (C(π1)−C(π2)) < v)

∧ π1(IM) |=M GM ∧ π2(IM) ∈ Π∗M}

Theorem 1. Given a canonical augmented model MΨ for
a multi-model planning problem Ψ = 〈MR,MH , T 〉, if the
sum of costs of all explanatory actions is less than or equal to
∆πMR

and if π is the cheapest valid plan forMΨ such that
D(π) ∈ Π∗T (MΨ,D(π)), then

(1) D(π) is optimal forMR

(2) E(π) is the MCE for D(π)

(3) There exists no plan π̂ ∈ Π∗R such that MCE for D(π̂)
is cheaper than E(π) ,i.e, the search will find an optimal ex-
plicable plan if one exists.

Proof Sketch. We observe that there exists no valid plan π′
for the augmented model (MΨ) with a cost lower than that
of π and where the ontic fragment (D(π′)) is optimal for the
human model. Let’s assume D(π) 6∈ Π∗R (i.e current plan’s
ontic fragment is not optimal in robot model) and let π̂ ∈ Π∗R.
Now let’s consider the augmented plan corresponding to π̂,
π̂E , i.e, E(π̂E) is the MCE for the plan π̂) and D(π̂E) = π̂.
Then the given augmented plan π̂E is a valid solution for our
augmented planning problem MΨ (since the π̂E consists of
the MCE for π̂, the plan must be valid and optimal in the
human model), moreover the cost of π̂E must be lower than
π. This contradicts our earlier assumption hence we can show
that D(π) is in fact optimal for the robot model.

Using a similar approach we can also show that no cheaper
explanation exists for πE and there exists no other plan with
a cheaper explanation.

Also note, that while it is hard to find the exact value for
the optimality gap, we are guaranteed that the optimality gap
is greater than or equal to one for domains with only unit
cost actions or is guaranteed to be greater than or equal to
(C2−C1), where C1 is the cost of the cheapest action and C2

is the cost of the second cheapest action (i.e ∀a, (CM(a) <
C2 → CM(a) = C1))

6.2 Balanced Plans
We can use the above formulation directly to obtain balanced
explicable plans, we just no longer need to put any specific
restriction on the cost of explanatory action. To generate opti-
mal balanced plans, we need to relax the requirement that the
final plan is optimal in the human model. Instead we can in-
corporate the inexplicability penalty into the reasoning about
the plan, by assigning the cost of a∞ (the goal action) to be
β times the difference between the optimal plan in the human
model and the current plan. When β is set to zero the prob-
lem would just identify the optimal plan corresponding to the
original robot model and when β is set high enough the for-
mulation just generates explicable balanced plans. This can
be guaranteed if beta is set higher that κ, where κ is some up-
per bound on plan length for the robot (that includes explana-
tory actions). On the other hand, if the cost of any explanatory
actions is also higher than κ then the formulation will try to
find the plan that is closest to an optimal plan in the original
human model and is still executable in the robot model.

To see the use of balanced plans, lets revisit the urban
search and rescue case. Here, the optimal path for the robot
to follow would be to go through P7, P8 and P12. The human
thinks the path should be the one through P6 and P5. Explain-
ing the optimality of the path requires explaining that the path
from P6 to P5 is blocked (which can be explained through the
action explain obstructed P6 P5) and the path from P8 to P12
is clear (explained by explain away obstructed P8 P12). Let
us assume that the application of each of these explanatory
actions increases the total cost by ten. The balanced explica-
ble plan in this setting would be

e x p l a i n o b s t r u c t e d P 6 P 5→INIT ACT→
move from p1 p9→ c l e a r p a s s a g e p 9 p 1 0→
move from p9 p10→move from p10 p11→
move from p11 p16→move from p16 p15→

GOAL ACT

If we try to identify an optimal balanced plan for β = 1 and a
cost of 5 for the clear passage action, then the plan that would
be generated would be –

INIT ACT→
move from p1 p9→ c l e a r p a s s a g e p 9 p 1 0→
move from p9 p10→move from p10 p11→
move from p11 p16→move from p16 p15→
GOAL ACT

6.3 Plans with Epistemic Side-effects
As mentioned earlier, in cases where the user is observing
a plan being executed, even the agent’s non-explanatory ac-
tions could have effects on user’s mental model. We can eas-
ily incorporate this requirement by associating effects involv-
ing meta-fluents into our task specific actions. Such effects
may be specified by domain experts or could be generated
using heuristic rules. For example, if an action is executed in
a state where a precondition believed by the user is not met
then that precondition should be removed from the human’s
perceived model.

To illustrate the use of such explanatory actions in our en-
coding let us visit the USAR scenario and assume that the
human thinks that the path from P8 to P12 is blocked and the
one from P6 to P5 is free. Also in this setting, for explain-
ing the status of passages (whether they are blocked or not)
the robot can now use two actions, one a rather expensive ex-
plicit communication action, that sends the updated map in-
formation to the human or the robot can just visit the blocked
passage and the human who is watching a video feed of robot
actions will learn that the passage is blocked or clear. Thus
the action descriptions for the move action will be –

(: a c t i o n move from P7 P8
: p r e c o n d i t i o n (and (r o b o t a t P 7)

. . .
(B (r o b o t a t P 7)))

: e f f e c t (and (r o b o t a t P 8)
. . .
(B (c l e a r P 8 P 1 2))
(i n c r e a s e (t o t a l −c o s t) 1)))

With this new action the robot knows that as soon as it
reaches P8 the human would know that the path from P8 to
P12 is clear so it can continue on that path. So the new robot
plan will be –

INIT ACT→move from p1 p7→move from p7 p8→
move from p8 p12→move from p12 p13→
e x p l a i n o b s t r u c t e d p 6 p 5→
move from p12 p13→move from p13 p14→
move from p14 p15→GOAL ACT

6.4 Plans for Inattentive Users
In this scenario, we can no longer assume that explanatory
actions would have deterministic effects on user’s model and
that means considering planning models that allow for non-
deterministic or stochastic effects.

Domain
New Compilation Model Space Search
cov. runtime cov. runtime

Blocksworld 13/15 569.38 13/15 2318.73
Elevator 15/15 59.20 1/15 3382.462
Gripper 5/15 2301.90 6/15 2093.54
Driverlog 4/15 2740.38 2/15 3158.59
Satellite 2/15 3186.93 0/15 3600

Figure 3: Table showing average runtime (sec) and coverage for
explanations generated for standard IPC domains.

To see a simple example of how this would look, consider
the USAR domain and look at the ability of the move ac-
tion to inform the commander about the status of the pas-
sage from P8 to P12. The robot can not always guarantee that
the commander would be looking at the screen and there is
a chance that the commander won’t be looking at the screen
when the path is presented. Thus in the new definition of ac-
tion (move from P7 P8) we will replace the effect that adds
B(clear P8 P12) with the effect (one-off (B(clear P8 P12))
(and)) Which means that the action’s ability to update the hu-
man model is a non-deterministic effect. In this case, we can
look for a conformant plan by converting the earlier search
into a search over belief space. A search node only passes the
goal test if the goal condition are met in every state in the
belief space. Thankfully, this particular problem does have a
conformant solution –

e x p l a i n o b s t r u c t e d p 6 p 5→
e x p l a i n c l e a r p 8 p 1 2→INIT ACT→
move from p1 p7→move from p7 p8→
move from p8 p12→move from p12 p13→
move from p13 p14→move from p14 p15→
GOAL ACT

7 Empirical Comparison of Model-Space
Search and Planning with Explanatory
Actions

The focus of this section is to see how our compilation com-
pares with the approaches that separate the reasoning about
explanations and plan generation. In particular, we will con-
sider the approaches discussed in [Chakraborti, Sreedharan,
and Kambhampati, 2018b] as a point of comparison. Note
that in order for the model space search to always identify the
optimal balanced explicable plan, generating an optimal plan
at each possible model is not enough. The approach would re-
quire iterating over the space of all possible optimal plans at
a given node to find one that is executable in the robot model
or require involved compilations that only produce optimal
plans that are executable in robot model. To avoid changing
the method too much, we used an optimistic version of the
model space search that only identifies one optimal plan per
search node and the search ends as soon as it find a node
where the optimal plan produced has the same cost as the
robot’s plan and is executable in the robot model.

For comparison, we selected five IPC domains and for each
domain, we created three unique models by introducing 10

random updates in the model (except in the case of gripper
and driverlog where only 5 were removed). Each of these
three domains were paired with five problem instances and
then tested on each of the possible configurations. Each in-
stance was run with a limit of 30 minutes, all explanatory ac-
tions were restricted to the beginning of the plan and the cost
of explanatory actions were set to be twice the cost of original
action. Table 3 lists the time taken to solve each of these prob-
lems. For calculating the average runtime, we used 1800 secs
as the stand in for the runtime of all the instances that timed
out. We used h max as the heuristic for all the configurations.

As clearly apparent from the table, the new approach does
better than the original method for generating balanced plans
for most of the domains. Gripper seems to be the only do-
main, where model search seem to be doing better but this
is also a domain that had the smallest number of model dif-
ferences. This points to the fact that the ability to leverage
planning heuristics seems to make a marked difference in do-
mains with a large number of possible explanatory actions.

8 Related Work
It’s widely accepted in social sciences literature that explana-
tions must be generated while keeping in mind the beliefs of
the agent receiving the explanation [Miller, 2018; Slugoski et
al., 1993]. As such, epistemic planning makes for an excel-
lent framework for studying the problem of generating these
explanations. While the most general formulation of epis-
temic planning has been shown to be undecidable, many sim-
pler fragments have been identified [Bolander, Jensen, and
Schwarzentruber, 2015]. Recently, there have been a lot of in-
terest in developing efficient methods for planning in such do-
mains [Muise et al., 2015; Kominis and Geffner, 2015; 2017;
Le et al., 2018; Huang et al., 2018]. In our base scenario, we
will assume (1) a finite nesting of beliefs, (2) the human is
merely an observer, and (3) all actions are public. The spe-
cific problems discussed in our paper hardly exercises most
of the capabilities provided by epistemic planning. It’s im-
portant to note that given the epistemic nature of the explana-
tory actions, solving the general model reconciliation prob-
lem would require leveraging all those capabilities. Our hope
is that by presenting model reconciliation in this more general
setting, the community would be motivated to start looking at
more general and complex versions of these problems.

Our work also looks at the use of explanatory actions
as a means of communicating information to the human
observer. The most obvious types of such explanatory ac-
tion includes purely communicative actions such as speech
[Tellex et al., 2014] or the use of mixed reality projec-
tions [Chakraborti, Sreedharan, and Kambhampati, 2018a;
Ganesan, 2017], but recent works have shown that physical
agents could also use movements to relay information such as
intention [MacNally et al., 2018; Dragan, Lee, and Srinivasa,
2013] and incapability [Kwon, Huang, and Dragan, 2018].
Our framework could be easily adopted to any of these ex-
planatory actions and would naturally allow for a trade-off
between these different types of communication.

Many recent works dealing with explanation generation for
planning, have looked at characterizing explanation in terms

of the types of questions they answer (c.f [Fox, Long, and
Magazzeni, 2017; Smith, 2012] and contrastive explanations
in general). This characterization is orthogonal to the question
of what type of information constitutes valid explanations.
Putting aside questions regarding observability, the reason
why a user requests an explanation is either due to knowledge
asymmetry (incomplete or incorrect knowledge of the task) or
due to limitations of their inferential capabilities. Depending
on the context, the answer to any of the questions described
in these papers would require correcting human’s model of
the task and/or providing inferential assistance. Works that
have looked at model reconciliation explanations have mostly
focused on the former. Explanations discussed in this paper
can be viewed as an answer to the question “Why this plan?”
(which can also be viewed as a contrastive question of the
form “Why this plan and not any other plan?”). This is not to
say that in complex scenarios just the model reconciliation in-
formation would suffice but it would need to be supplemented
with information that can bridge the differences in inferential
capabilities. Use of abstractions [Sreedharan, Srivastava, and
Kambhampati, 2018], providing refutation of specific foils
[Sreedharan, Srivastava, and Kambhampati, 2018] and pro-
viding causal explanations [Seegebarth et al., 2012] could all
be used to augment model reconciliation explanations.

9 Conclusion and Discussion
The paper presents a more general formulation for the prob-
lem of planning with users in the loop with asymmetric mod-
els than any of the previous works. We discuss how this for-
mulation can be extended to capture novel explanatory be-
haviors and can be solved using approaches that are computa-
tionally more efficient than methods that rely on direct model
space search. One possible avenue for future work would be
investigating and implementing planning compilations that
capture extensions of the model reconciliation problem that
have previously been investigated like specific foils, uncertain
human models, state abstractions, differences in action costs,
disjunctive preconditions, etc... It would also be worth inves-
tigating if there are any specific considerations to be made
when choosing heuristics for such planning models.

Acknowledgments
This research is supported in part by the ONR grants
N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-
2840, the AFOSR grant FA9550-18-1-0067, NASA grant
NNX17AD06G and JP Morgan faculty research grant.

References
[Bolander, Jensen, and Schwarzentruber, 2015] Bolander,

T.; Jensen, M. H.; and Schwarzentruber, F. 2015.
Complexity results in epistemic planning. In IJCAI.

[Chakraborti et al., 2017] Chakraborti, T.; Sreedharan, S.;
Zhang, Y.; and Kambhampati, S. 2017. Plan explana-
tions as model reconciliation: Moving beyond explanation
as soliloquy. In IJCAI.

[Chakraborti, Sreedharan, and Kambhampati, 2018a]
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S.

2018a. Projection-Aware Task Planning and Execu-
tion for Human-in-the-Loop Operation of Robots in a
Mixed-Reality Workspace . In IROS.

[Chakraborti, Sreedharan, and Kambhampati, 2018b]
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S.
2018b. Explicability versus explanations in human-aware
planning. In AAMAS. International Foundation for
Autonomous Agents and Multiagent Systems.

[Dragan, Lee, and Srinivasa, 2013] Dragan, A. D.; Lee,
K. C.; and Srinivasa, S. S. 2013. Legibility and pre-
dictability of robot motion. In Proceedings of the 8th
ACM/IEEE international conference on Human-robot
interaction, 301–308. IEEE Press.

[Fox, Long, and Magazzeni, 2017] Fox, M.; Long, D.; and
Magazzeni, D. 2017. Explainable Planning. In IJCAI
XAI Workshop.

[Ganesan, 2017] Ganesan, R. K. 2017. Mediating Human-
Robot Collaboration through Mixed Reality Cues. Ph.D.
Dissertation, Arizona State University.

[Huang et al., 2018] Huang, X.; Fang, B.; Wan, H.; and
Liu, Y. 2018. A general multi-agent epistemic plan-
ner based on higher-order belief change. arXiv preprint
arXiv:1806.11298.

[Kominis and Geffner, 2015] Kominis, F., and Geffner, H.
2015. Beliefs in multiagent planning: From one agent to
many. In ICAPS.

[Kominis and Geffner, 2017] Kominis, F., and Geffner, H.
2017. Multiagent online planning with nested beliefs and
dialogue. In ICAPS.

[Kulkarni et al., 2019] Kulkarni, A.; Chakraborti, T.; Zha,
Y.; Vadlamudi, S. G.; Zhang, Y.; and Kambhampati, S.
2019. Explicable Robot Planning as Minimizing Distance
from Expected Behavior. In AAMAS.

[Kwon, Huang, and Dragan, 2018] Kwon, M.; Huang, S. H.;
and Dragan, A. D. 2018. Expressing robot incapability. In
Proceedings of the 2018 ACM/IEEE International Confer-
ence on Human-Robot Interaction, 87–95. ACM.

[Le et al., 2018] Le, T.; Fabiano, F.; Son, T. C.; and Pontelli,
E. 2018. Efp and pg-efp: Epistemic forward search plan-
ners in multi-agent domains. In ICAPS.

[MacNally et al., 2018] MacNally, A. M.; Lipovetzky, N.;
Ramirez, M.; and Pearce, A. R. 2018. Action selection
for transparent planning. In AAMAS, 1327–1335. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

[Miller, 2018] Miller, T. 2018. Explanation in artificial in-
telligence: Insights from the social sciences. Artificial In-
telligence.

[Muise et al., 2015] Muise, C. J.; Belle, V.; Felli, P.; McIl-
raith, S. A.; Miller, T.; Pearce, A. R.; and Sonenberg, L.
2015. Planning over multi-agent epistemic states: A clas-
sical planning approach. In AAAI.

[Nebel, 2000] Nebel, B. 2000. On the expressive power
of planning formalisms. In Logic-based artificial intelli-
gence. Springer. 469–488.

[Seegebarth et al., 2012] Seegebarth, B.; Müller, F.; Schat-
tenberg, B.; and Biundo, S. 2012. Making hybrid plans
more clear to human users-a formal approach for generat-
ing sound explanations. In ICAPS.

[Slugoski et al., 1993] Slugoski, B. R.; Lalljee, M.; Lamb,
R.; and Ginsburg, G. P. 1993. Attribution in con-
versational context: Effect of mutual knowledge on
explanation-giving. European Journal of Social Psychol-
ogy 23(3):219–238.

[Smith, 2012] Smith, D. E. 2012. Planning as an iterative
process.

[Sreedharan, Srivastava, and Kambhampati, 2018]
Sreedharan, S.; Srivastava, S.; and Kambhampati, S.
2018. Hierarchical expertise-level modeling for user
specific contrastive explanations. In IJCAI.

[Tellex et al., 2014] Tellex, S.; Knepper, R.; Li, A.; Rus, D.;
and Roy, N. 2014. Asking for help using inverse seman-
tics. In R:SS.

[Zhang et al., 2017] Zhang, Y.; Sreedharan, S.; Kulkarni, A.;
Chakraborti, T.; Zhuo, H. H.; and Kambhampati, S. 2017.
Plan Explicability and Predictability for Robot Task Plan-
ning. In ICRA.

Explainable AI

Sister Workshops

